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ABSTRACT

Many studies emphasize the importance of genetic diversity
and the need for an appropriate tuning of selection pressure in
genetic programming. Additional important aspects are the
performance and effects of the genetic operators (crossover
and mutation) on the transfer and stabilization of inherited
information blocks during the run of the algorithm. In
this context, different ideas about the usage of lineage and
genealogical information for improving genetic programming
have taken shape in the last decade.

Our work builds on those ideas by introducing an evo-
lution tracking framework for assembling genealogical and
inheritance graphs of populations. The proposed approach al-
lows detailed investigation of phenomena related to building
blocks, size evolution, ancestry and diversity. We introduce
the notion of genetic fragments to represent subtrees that are
affected by reproductive operators (mutation and crossover)
and present a methodology for tracking such fragments using
flexible similarity measures. A fragment matching algorithm
was designed to work on both structural and semantic lev-
els, allowing us to gain insight into the exploratory and
exploitative behavior of the evolutionary process.

The visualization part which is the subject of this paper
integrates with the framework and provides an easy way of
exploring the population history. The paper focuses on a
case study in which we investigate the evolution of a solution
to a symbolic regression benchmark problem.
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1. INTRODUCTION

Genetic programming is a nature-inspired optimization
algorithm which follows the model of biological evolution.
It works by optimizing a population of computer programs
according to a fitness function that determines each pro-
gram’s ability to perform a given task. It was invented by
Koza [8] in 1992 and has since gained massive popularity
due to its robustness and performance even when applied to
very difficult optimization problems. But despite its success,
many questions regarding the dynamics of the process and
the algorithmic internals remain unanswered. The analogy
with natural evolution brings forward notions like genotypes,
phenotypes, selection pressure, diversity and genetic oper-
ators. A well-established opinion is that the success of the
algorithm depends on having enough genetic diversity in the
population, so that the recombination operators can produce
novel genetic variation that selection can act upon [10, 3,
9]. In practice, the creation of new genetic variation is often
affected by bloat and introns; in the presence of constant
selection pressure, insufficient variation will quickly lead to
loss of diversity and stagnation [11, 1]. For these reasons,
the preservation of genetic diversity during the run became
the subject of intensive research, with results ranging from



improved crossover variants [12, 15] to algorithmic variants
such as RAPGA and OSGA [1].

In this context, the usage of lineage and genealogy infor-
mation for the development of novel self-adaptive genetic
programming algorithms seems a logical step forward. How-
ever, it was only with the technological advances of the last
decade in the field of computer engineering, that the chal-
lenge of completely recording an evolutionary run of modest
dimensions became a tractable problem. A short description
of previous work done in this area is provided below.

McPhee and Hopper [10] used a node numbering scheme
to quantify the relative amount of genetic material (from
the initial population) that is present at the end of the run.
They used the most recent common ancestor (called “eve”)
of all the individuals in the final generation as an indication
of run quality and also as a way to measure diversity by
looking at the shared amount of genetic material between
“eve” and the rest of the population.

Burke et al. [4] used a variant of tournament selection
that grouped individuals by common genetic lineages, to
encourage diversity preservation during the selection step
of a genetic programming algorithm run. Using what they
called “lineage selection”, they allowed only one individual
from each genetic lineage to take part in the tournament in
order to shift the population from the “fit” to the “fit and
diverse”.

Also for diversity preservation, Essam and Mckay [6] used
a tag system to mark individuals of common ancestry in order
to prevent their crossover. Their objective was to restrict
the ability of a few key individuals and their descendants
from rapidly dominating the population.

Goetticher and Kaminksy [2] looked at the short-term
history (previous generation) to partition individuals into
fitness classes and steer selection towards the class of best
20% individuals. This method has been criticised for using a
linear selection scheme, transferring individuals unchanged
from one generation to the next and only using the latest
ancestor.

Dong and Chen [5] used a larger ancestry (up to four ances-
tors) to calculate the average fitness of a given lineage before
grouping individuals into fitness classes, named “best”, “mid-
dle” and “worst”. Additionally, as a measure for preserving
diversity, they randomly retain only one individual with the
same fitness, discarding the rest.

As we can see, different strategies for the selection scheme
can be chosen based on genealogy information. In our opinion,
using just the fitness information of an individual’s ancestry,
or just the root lineage of an individual, are insufficient
criteria for steering the selection process. Our approach is
based on the idea of recording the entire history of a genetic
programming run.

The tracking framework consists of a number of compo-
nents dealing with recording the information, processing it,
and displaying it in a user-friendly manner. The implementa-
tion was done within HeuristicLab, a framework for heuristic
and evolutionary algorithms developed by members of the
Heuristic and Evolutionary Algorithms Laboratory (HEAL)
at the Upper Austria University of Applied Sciences. Heuris-
ticLab provides a complete environment with out-of-the-box
support for a large variety of operators [14]. Special attention
has been paid to the tree isomorphism problem which is a
part of our fragment matching methodology.

In this paper, we describe in detail the visualization com-
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ponent of our approach, which allows the user to explore
populations, genealogies and the inheritance of genetic ma-
terial. We provide an example run in order to illustrate
the main ideas behind our approach from a practical point
of view. The paper is organized as follows: Section 2 de-
scribes the genealogy graph and the synthetic benchmark
problem used as an example, while Section 3 describes the
methodology for tracking inherited genetic material during
the run. Finally, Section 4 is dedicated to conclusions and
future work.

2. CONSTRUCTING THE GENEALOGY

Internally, the genealogical information is stored in the
form of a directed graph, in which vertices represent individ-
uals while arcs and paths in the graph represent hereditary
relationships. By convention, a parent-child relationship is
represented by an arc with the orientation parent—child, but
for graph traversal purposes, the arc information is held by
both the parent and the child.

After each iteration of the algorithm, the offspring obtained
via crossover and mutation are added as vertices in the graph
and connected with arcs to their parents. Each generation is
represented as a horizontal layer in which vertices are ordered
by decreasing fitness.

Elite individuals are also present in the graph; an elite
that survives multiple generations is represented by a set
of vertices (one for each generation) connected by arcs and
forming a path in the graph. Technically, the directed acyclic
graph that results at the end of the run is a union of all the
genealogies in the population.

In the following, we apply the methodology on a symbolic
regression benchmark problem. We have chosen an easier
instance, namely the Viadislavleva-5 synthetic benchmark
[13] in which the objective is to find the function:

(z1 = D)(z3 = 1)

e (TR T)

In the interest of producing clear graphics, the dimensions
of the run were kept small and only crossover was used as a
variation producing operator. The population size was set
to 20 individuals and the length of the run to 30 generations.
The quality of the best solution was 0.834 Pearson’s R? on
the training data (0.775 on test).

Figure la shows the evolution of the individual qualities
for the whole population. Vertices are colored according to
the quality and additionally, each graph arc is colored using
a gradient stretched between the colors of the vertices it
connects. The graph layers corresponding to each generation
are labeled with the generation number, where 0 represents
the initial population, 1 the first generation, and so on.

There are several aspects that can be observed on the
graph, for example:

e The distribution of fitness values — it can be observed
in the graph per generation, per lineage, or overall. For
successful runs, there is a clear improvement in average
fitness from one generation to the next, until the search
converges. The general tendency, considering layers of
vertices ordered by descending fitness, is for the fitness
to follow a gradient from the top right vertex of the
graph to the bottom left one (Figure 1a).

The intervals in which the search stagnated (gener-
ations 8-11, 13-17, 19-25 and 27-30) — during these
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Figure 1: Distribution of fitness, genealogies and root lineages in the population graph.
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Figure 2: Evolution of qualities in the root lineage of the
best individual

generations without improvement there is an increased
chance that the best individual will start dominating
the population, since it will get selected more often.
This causes an increase of the population average fitness
and a decrease in population diversity.

The genealogies (Figure 1b) and root lineages (Figure
1c) that survive until the end of the run and the number
of individuals they have in common.

The individuals involved in the creation of the best
solution (Figure 1d) and its root lineage (Figure le).

Empirically we notice that the root lineage of the best in-
dividual contains a significant number of elites from previous
generations. This means that, with few exceptions, only the
best individuals were able to create successful children. We
can say that the heritability of good building blocks plays an
important role in the evolutionary process. Figure 2 supports
this view, showing the evolution of qualities in the root lin-
eage of the best individual. The quality generally improves,
meaning that a good parent is almost always able to produce
at least one good offspring. Another interesting question is
whether only good parents can produce good offspring or not
— it would appear from the graph that at least one parent has
to have a high fitness value, as fit individuals are more likely
to contain relevant building blocks.

3. TRACKING OF GENETIC FRAGMENTS

As we have seen, each individual in the population is
associated with a vertex in the genealogy graph. In this
section, we detail how the genealogy graph can be used to
track the propagation of genetic information. We introduce
the necessary notions below:

Genetic fragment The genetic fragment (or just fragment)
represents the concrete subtree that gets changed by a
genetic operator in the course of producing the offspring.
That is, the subtree that gets swapped from the non-
root parent to the root parent by crossover, or the node
or subtree that gets modified by mutation.

Node similarity criteria We define a set of conditions for
deciding whether a node is similar to another node. For
our approach, we use the following predicates:
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Figure 3: Individuals containing the fragment
(= (x X1 X3) 0).  The occurrence of this subtree in
the root ancestor at generation 6 marks an important
moment in the evolution of the population.

1. Match constants: returns true if the nodes repre-
sent the same constant value, otherwise false.

. Match variables: returns true for variable nodes
which represent the same variable, otherwise false.

. Match variable weights: returns true for variable
nodes which have the same variable weight, other-
wise false (note: this condition acts independently
from the one above).

Additionally, it is clear that different nodes cannot be
similar (ie, constant vs variable node).

With the above similarity criteria and our tree inclusion al-
gorithm [7], we are able to identify structurally (relaxed node
matching) or semantically (strict node matching) similar sub-
trees. Note that similar subtrees may not be isomorphic, as
one of them may contain a larger number of nodes than the
other. We require isomorphism in the case of fragments that
are propagated via crossover. The occurrence frequency of a
given genetic fragment (or subtree) is given as the percentage
of individuals in the population that contain it within their
structure.

The distinction between semantic and structural similar-
ity is important as the population may have many similar
structures that only differ from each other by some constant
value or some variable weight. Obviously, populations of
structurally similar individuals are not particularly suited
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Figure 4: Root lineage of the best individual — generations 0-16
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for evolution. Furthermore, if equivalent individuals (similar
both structurally and semantically) occur in the population,
then we have a good indication that the search has converged.

We demonstrate the tracking methodology described above
on our benchmark problem. In Figure 3a, the best individual
of the run is shown, while Figures 4 and 5 display its root
ancestry, with subtrees received via crossover marked with
rectangles. In all figures of individuals, subtrees are colored
according to their occurrence frequency in the population.

With this information we can determine which crossover
operations produced an improvement and which tree frag-
ments were transferred. We can then track the origins of
these fragments in the population graph to get an idea of
their distribution and their impact on the evolutionary pro-
cess. The following observations apply for the root lineage
of the best individual, where we use the notation root ances-
tor n to denote the root ancestor of generation n (the n-th
individual of the root lineage):

e The first fragment to have a major impact on the
quality of the best individual was the one received by
the root ancestor 6 (Figure 4). This fragment was
injected into the structure of a rather large intron,
(= (+ (= 0X1) (x X2 0)) 0) (in prefix notation), that
was changed to (— (x X1 X3) 0) (marked with a dashed
rectangle in Figure 3a). Figure 3b shows the propaga-
tion of this particular subtree in the population.

In Figure 3b we see that the subtree (— (x X1 X3) 0)
appeared in generation 6 and became part of the major-
ity of future individuals. The colored arcs in the figure
mark crossover operations in which this particular sub-
tree was exchanged. As these operations are much
fewer than the actual number of individuals containing
the fragment, we conclude that the selection process
was mostly responsible for its propagation — the root
ancestor of generation 6 was selected 8 times.

A substantial improvement occurred when the intron
(= (= (= 00) (+ X2 0) X3)) in root ancestor 8’s struc-
ture was replaced with a subtree encoding a linear
relationship between variables X1 and X3 (Figure 4,
generation 8). Tracking this particular subtree we no-
tice it was formed in Generation 5 and was contained
by root ancestors 6 and 7. We see in the genealogy
graph that root ancestor 8 was obtained through a
crossover between root ancestor 7 and itself.

During reproduction in generations 11 — 12, another
intron was placed by crossover in the tree structure of
root ancestor 12. This operation effectively removed
the variable X3 from the formula, which brought a
40.135 increase in fitness.

Crossover operations acting on root ancestors 13, 14
and 15 had a neutral effect (swapping existing frag-
ments with identical ones), bringing no change to their
respective fitness values.

The biggest improvement in solution quality (+0.236)
occurred when the fragment (— X1 X3) of root ancestor
18 was replaced with a fragment containing the variable
X1. The quality was further improved (generations
18—19) occurred when an intron, namely the subtree
(x X2 0) which evaluates to 0 was replaced with another
subtree (exp 0) which evaluates to 1.
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e Consequently, the root ancestor of generation 19 began
to dominate the population (being the best of the
run until generation 25). Figure lc shows the root
lineages of all the individuals in the last generation.
We see that up to generation 19, all the lineages are
identical. With regard to genetic diversity and fragment
frequencies, it is clear that through the combined effects
of inheritance (via crossover) and selection, the amount
of shared genetic material increases during the run. In
other words, the genetic diversity of the population
decreases.

Finally, in generation 27, the constant subtree (exp 0)
was replaced with another subtree (— X2 X3) which, in
the genetic context of root ancestor 27, had the effect
of a parametric improvement to the model formula.

In addition to the above, we can also make a series of
more general remarks regarding the evolutionary process.
It seems that in the absence of a local search mechanism
like mutation which can produce new values for the model
parameters, the algorithm relies on constant subtrees (evalu-
ating to a constant value) as a means to introduce constants
in the formula. We can observe even in the final generation
a number of introns in the tree structure of the best indi-
vidual (for example (— (exp 0) (exp 0) or (— 0 0)) as can
be observed in Figure 5, generations 27-30. With regard to
population diversity, we notice the increases in frequency of
several subtrees (Figures 4 and 5) and the common lineages
in the population (for example in Figure 1c).

4. CONCLUSIONS AND FURTHER WORK

In this paper, we presented an evolution tracking frame-
work which allows the user to navigate the complete history
of a genetic programming run. Using a flexible similarity
criteria for tree nodes, our tree inclusion algorithm is able
to find similar structures in the population, thus allowing
us to track down subtrees and investigate the inheritance of
genetic material.

Our interactive visual representation of the genealogy
graph is able to illustrate the evolution of populations over
time in a compact and intuitive manner. Although — for
the purposes of this paper — the example run was of re-
duced dimensions, our implementation is perfectly suitable
for tracking large runs in which the genealogy graph varies
in size between thousands and tens of thousands of vertices.

In the given example run, a population of 20 individuals
was evolved over a period of 30 generations, using only
crossover as a variation-producing operator.

This approach opens new possibilities for understanding
the dynamics of genetic programming. It allows us to study
the interplay between selection and the variation producing
operators, the genotype-phenotype mapping and the evolu-
tion of diversity. The information present in the graph at
any given moment can be used to aggregate various statistics
regarding the genetic operators success rate, the size and
average fitness of the population, or the trajectories of the
best solutions in the search space. Further insights can be
gained from investigating the behavior of the algorithm in
terms of exploration (global search) and exploitation (local
search) capabilities.

Future work may include working out a flexible tree simi-
larity metric (for example, based on the maximum common
subtree of two trees) and using it to characterize lineages
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and genealogies in terms of tree distance and to quantify the
amount of inherited information.

Using genealogy information combined with structural
similarity pointers, next-generation algorithms may gain the
ability to automatically decide which building blocks are
to be preserved and which to be discarded during the run.
Ideally, our algorithm will be able to retroactively steer
itself towards unexplored regions of the search space, thus
maintaining diversity and avoiding local optima.
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