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ABSTRACT
We propose an evolutionary flow for finite state machine in-
ference through the cooperation of grammatical evolution
and a genetic algorithm. This coevolution has two main ad-
vantages. First, a high-level description of the target prob-
lem is accepted by the flow, being easier and affordable for
system designers. Second, the designer does not need to de-
fine a training set of input values because it is automatically
generated by the genetic algorithm at run time. Our exper-
iments on the sequence recognizer and the vending machine
problems obtained the FSM solution in 99.96% and 100% of
the optimization runs, respectively.

Categories and Subject Descriptors
I.2.2 [Automatic Programming]: Program synthesis; I.2.8
[Problem Solving, Control Methods, and Search]:
Heuristic methods

General Terms
Algorithms

Keywords
Grammatical evolution; Genetic programming; Genetic al-
gorithms; Design/synthesis; Finite state machines

1. INTRODUCTION
Finite state machines (FSMs) have been commonly used

to describe many kind of state-based systems like, for in-
stance, cluster labeling, fault detection, pattern recognition
or hardware design and verification. It is well known that
they provide a high-level mechanism to govern a complex
system and, starting from an FSM, many design tools are
able to generate its hardware system.

Many previous works like [2, 5], tried to solve the infer-
ence of FSMs. But they usually require a given training set
of input values and/or rely on complex formulae, rules or
constraints to describe the problem at hand.
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Figure 1: Optimization flow. Thick arrows repre-
sent the execution path, regular arrows indicate data
transmission and dotted arrows indicate usage.

In this paper we propose an optimization flow that, by
means of grammatical evolution (GE) in collaboration with
a genetic algorithm (GA), is able to find the FSM descrip-
tion that solves a computational problem and verifies an
automatically generated set of input values.

2. EVOLUTIONARY FLOW
We have chosen Grammatical Evolution (GE) [4] as the

technique to explore and limit the search space which, in our
proposal, is formed by FSMs.

The evolutionary scheme we propose is shown in Figure 1.
The Grammatical Evolution (GE) module receives an initial
population of FSMs randomly generated. Notice that, in its
execution, GE uses the Fitness Evaluator (FIT) module to
test each candidate FSM. The fitness function is a measure
of distance, in number of different output values, between
the output generated by the FSM under evaluation and the
expected (correct) output.

The expected output is generated by a high-level code
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Table 1: Results for 3-bits pattern recognizer.
Pattern Golden Reducible NO sol.

000 23.33 % 76.66 % 0
001 65.52 % 34.48 % 0
010 93.10 % 6.89 % 0
011 93.10 % 3.45 % 1
100 92.86 % 7.14 % 0
101 96.55 % 3.45 % 0
110 63.33 % 36.66 % 0
111 23.33 % 76.66 % 0

Total 68.68 % 31.28 % 0.04 %

(Java) that solves the problem. The creation of this code
is usually easier than the obtention of the reduced FSM.
Therefore, our proposal can be applied to any problem that
could be described through a high-level code.

Once GE finishes, and before reaching the maximum num-
ber of iterations, the Genetic Algorithm (GA) module exe-
cutes over the best solution coming from GE.

GA module tries to find out the input string that max-
imizes the number of failures for each given FSM, and in-
corporates the resulting strings to the set of inputs that
FIT processes. Therefore, a feedback between GA and FIT
is produced, which means that, in the next iteration, the
FSMs processed by GE will be tested over a harder objec-
tive function, automatically generating the training set.

As seen in Figure 1, the best solutions (elites) coming from
the previous execution of GE are inserted as immigrants into
the GE new population.

We have implemented our optimization flow in Java. The
GE module was coded using GEVA [3], while the rest of
the code was developed by us. The algorithms, programs
and tests are publicly available in our Java Evolutionary
Computation library (JECO) at Google Code [1].

3. EXPERIMENTAL RESULTS
We have tested our proposal with two problems: the 3-

bit overlapped sequence recognizer and the vending machine
problem. In both of them we use input strings of 100 bits
length, which corresponds to a huge search space for the
input set (2100 combinations).

In the sequence recognizer problem we run 30 optimiza-
tions iterating 50 times the GE main loop for each one of the
eight 3-bits different patterns. After each run, we obtained
one FSM as a solution. Table 1 shows the results.

As seen, our algorithm obtained the reduced FSM solution
(called “Golden”) in 68.68% of the runs and an equivalent
reducible solution in 31.28% of the runs. Just one run for the
011 pattern did not find any solution. Notice that partially
correct FSMs are not considered as solutions.

The vending machine problem represents a different sce-
nario: (1) the machine dispenses a product after receiving a
certain amount of money or more; (2) after dispensing the
product (output will be 1) the machine is reset to the initial
state providing no change; (3) the machine accepts two kind
of coins: 5¢, and 10¢.

In the case that the amount to reach was 15¢, five different
paths lead to five different final states, as represented in the
FSM shown in Figure 2 (a), having a number of nine states.
However, this FSM can be reduced to a simpler machine
having just four states, as shown in Figure 2 (b). Therefore,
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Figure 2: (a) FSM solving 15¢ vending machine.
Transitions from the final states to S were removed.
(b) Reduced FSM for the 15¢ vending machine.

finding a reduced FSM that solve the problem is harder than
in the sequence recognizer problem.

We tackled the vending problem for an amount of 15¢ with
the same experimental setup as in the pattern recognition
problem. The optimization was successful because all the 30
runs obtained the golden FSM, similar to Figure 2 (b).

4. CONCLUSIONS AND FUTURE WORK
In this paper, we propose an evolutionary flow where FSM

implementations are automatically obtained from scratch
through a grammatical evolution process. Using a genetic
algorithm, the flow automatically generates the training set
of inputs that will be tested by the fitness function, finding
out those inputs with the highest failure rate. In addition,
no complex rules or formula are required. On the contrary,
a Java code solving the tackled problem is needed by the
fitness module.

Future work involves parallelization of the evaluation phase
in order to tackle more complex problems.
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