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ABSTRACT
Multiagent evolutionary algorithm (MEA) is a relatively
new optimization technique, where a life cycle of a popu-
lation of agents, which perform local search, is simulated.
The algorithm was originally intended as a method for solv-
ing the graph coloring problem and incorporates ideas such
as lifespans of agents and a positive or negative reinforce-
ment for the ability of the agent to improve fitness or its
stagnation. In this paper, we propose to use MEA for op-
timization on NK fitness landscapes. These landscapes are
popular for the tunability of their ruggedness and are a par-
ticularly interesting use case for MEA. This algorithm is
especially well suited for functions, where local search tends
to fail because of their multimodality. However, using many
short-term local search subroutines in a well-tuned version
of MEA can significantly improve the results of the same lo-
cal search algorithm. Experimental results are presented for
MEA with the simple (1+1) Evolutionary Algorithm ((1+1)
EA) used as a local search subroutine. These results show
that in large and more rugged NK landscapes, MEA out-
performs the multi-start (1+1) EA with number of parallel
starts equal to the initial population size of MEA. This is
the first time we obtained results, which clearly indicate
that solely the emergent multiagent nature of MEA, driven
by the lifespans and the reinforcement mechanism, is able
to improve the results of multi-start local search.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods

General Terms
Algorithms
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1. INTRODUCTION
Population-based stochastic local search algorithms are

currently a very popular topic both at the core of evolution-
ary computation research [1, 21] and applications such as
graph coloring [14], vehicle routing [16] or protein folding
[6]. Simple local search algorithms usually tend to fail on
fitness landscapes with strong bias towards local optima or
suffer from cycling on very large plateaus. Population-based
local search is one of the most popular ways, which are cho-
sen by researchers to overcome these difficulties. One of the
alternative ways is represented by learning algorithms, such
as the hill climbing with learning [11].

Multiagent evolutionary algorithm (MEA) is a general me-
taheuristic model, which draws inspiration from simulation
of a life cycle of a population of agents, which perform local
search on a fitness landscape. Each agent has its lifespan
and new agents are born with certain period of time, which
causes MEA to be an algorithm with variable population
size. The general idea behind MEA is to perform many
short-term local search subroutines, instead of long-term lo-
cal search. A collection of promising solutions, which were
previously found, is explicitly stored in a structure called
elite list. From this structure, the initial solutions for the
newly born agents are taken. Thus, MEA relies on a well-
tuned process of highly organized restarts from promising
solutions and performing short-term local search subrou-
tines to improve these solutions [2]. We note that there also
is another multiagent evolutionary algorithm with similar
name, abbreviated MAEA-CmOPs, which uses a simulation
of agents on a toroidal lattice, which aim to maximize their
energy [12]. This approach, despite the similarity in the
name, uses very different ideas than the method we study
here.

In this paper, we explore the ability of MEA to optimize
on NK landscapes [9]. These landscapes are a popular topic
of both theoretical and empirical research in evolutionary
computation, because of the tunability of their ruggedness
[8]. A number of results in the research on NK landscapes
is dedicated to measures of their hardness [13, 19], phase
transitions [3, 5] and their structure [15]. NK landscapes
represent a particularly interesting use case for MEA. The
previous research suggests that MEA is promising especially
on functions with some level of multimodality, where pure
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local search tends to fail because of local optima or plateaus.
However, the landscape should not be too rugged, since then
we might face a problem that may not likely be solvable by
any state-of-the-art method. Therefore, NK landscapes offer
a promising way, how to study the optimization capabilities
of MEA on functions with certain level of ruggedness.

The paper is organized as follows. In Section 2, we review
the related work regarding MEA and population-based local
search in general, as well as the main results regarding the
NK landscapes. In Section 3, we describe the (1+1) Evo-
lutionary Algorithm ((1+1) EA) for NK landscapes and its
use within the optimization framework of MEA. In Section
4, we present the experimental results of MEA and compare
it to the equivalent multi-start (1+1) EA. In Section 5, we
finally present the conclusions to this work.

2. RELATED WORK
At this point, we provide a short introduction to the re-

lated research on population-based local search and MEA.
Additionally, we review the foundations of NK landscapes
and the most important results on them.

2.1 Population-based Local Search
The design of a solid population-based framework for local

search is still a current research topic. In swarm intelligence,
different metaheuristic ideas are taken from the behavior of
certain multiagent systems in nature to organize the search
process. The most typical example are the bee algorithms,
such as the Artificial Bee Colony (ABC). ABC differentiates
between several different types of bees, which have different
tasks in the search process: employed bees, onlooker bees
and scout bees [7].

In contrast, in MEA, each agent has basically the same
role in the optimization process. In a certain generation,
the agent is born and some previously found promising so-
lution, as well as an initial lifespan is assigned to it. Then,
the agent performs several iterations of local search each
generation. Each agent also records one promising solution
it found during its life. This solution is the best from the
solutions, at which it arrived at the end of local search for
each generation. These moments at the end of local search
within each generation are referred to as milestones. Then,
when agent reaches zero lifespan and is eliminated, this “re-
stricted best” solution is passed to the elite list. The elite
list accepts it if and only if this solution is not inferior to all
current solutions in the elite list. Additionally, MEA also
incorporates a mechanism of reward or punishment, when
lifespan of an agent is modified according to the change in
fitness [2].

We note that MEA was originally tailored for the graph
coloring problem and incorporated a specific tabu search
algorithm for graph coloring. However, the ideas, which
were used to improve the results of the tabu search, were
quite general [2]. The results suggested that MEA benefits
from several concepts, which are briefly summarized in the
following.

1. The way how agents are born helped to extend the
search in areas, where the agent could choose from
several equivalent ways.

2. The restriction on the solutions in elite list to the mile-
stones helped to avoid restarts from local optima.

3. The length of local search within a generation was
longer for solutions with higher fitness. This was due
to the fact that at the end of the evolution, an im-
provement tends to require many more steps than at
the beginning of the evolution.

2.2 NK Model of Fitness Landscapes
We aim to adapt the previous concepts to a more general

problem. We chose the NK landscapes, because their mul-
timodality can be tuned. Thus, they offer a possibility to
study the observed properties of MEA more transparently
than in our previous research [2].

NK model creates binary optimization problems based on
two parameters: n - the number of bits, k - the number of
artificially created“interactions”per each bit [9]. The fitness
is calculated as a sum of contributions of each bit, i.e.:

F (x) =

n∑

j=1

fj(xj , xIj,1 , xIj,2 , ..., , xIj,k), (1)

where F (x) is the fitness of bitstring x, fj is the contribution
function for bit j and Ij,1,Ij,2,...,Ij,k are the indexes of bits,
which interact with bit j. These values of fj can simply be
stored in a collection of n lookup tables with 2k+1 cells and
are generally taken from some probability distribution [18].

The advantage of NK model is that it can be tuned very
well. For k = 0, we obtain a simple unimodal function. For
k = 1, the problem is still in P, while for k > 1, the problem
is NP-hard [23]. With growing k, the NK landscape tends to
be more rugged and local search is more likely to get stuck in
local optima. However, it should be taken into account that
the interaction mapping I should not be restricted, since
when the interacting bits are the next k bits in the string
(with cycling if we reach the end of the string), the problem
can be solved in polynomial time by dynamic programming
[23].

In the unrestricted model, which is NP-hard, the general
practice is that the k interactions are chosen randomly and
the lookup tables for each bit are generated uniformly at
random from [0, 1). These unrestricted NK landscapes were
previously used in experimental studies [17, 18] and will be
used also in our investigation.

3. (1+1) EA AND MEA ALGORITHMS FOR
NK LANDSCAPES

(1+1) EA is probably the simplest evolutionary algorithm,
where we have a single individual. This individual carries a
vector x of n bits at the beginning and then, it is improved
by flips of each bit with probability depending on n. Most
typically, probability of flipping each bit is 1/n. The result-
ing solution is accepted if and only if it leads to an individual
with at least as good fitness F (x) as the current one.

The pseudocode of (1+1) EA is given in Algorithm 1.
(1+1) EA is often a subject of theoretical research [4]. Nev-
ertheless, it is suitable also for our experimental investiga-
tions for its simplicity and generality. In a previous study,
it was shown that mutation rate 1/n per bit is generally
better than having a constant probability of a flip for each
bit. Additionally, it was shown that mutation rate 1/n is
nearly optimal for a spectrum of pseudoboolean functions
with bounded epistasis, to which NK landscapes also belong
[20]. Therefore, in our experiments, we use (1+1) EA with
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Algorithm 1: (1+1) EA
(1+1) EA

Input: input vector x ∈ {0, 1}n
Output: output vector xo ∈ {0, 1}n

1 while stopping criterion is not met
2 let x′ be a vector created by flipping each bit of x with probability 1/n
3 if F (x) ≤ F (x′) then x = x′

4 return xo = x

Algorithm 2: The Multiagent Evolutionary Algorithm (MEA) for NK Landscapes
The Multiagent Evolutionary Algorithm (MEA) for NK Landscapes

1 generate |P0| agents randomly, assign q points to their lifespans and
for each agent, let the local search length be γ, let m be 1

2 while stopping criterion is not met
3 decrease lifespan of each agent by 1 point
4 eliminate agents with 0 lifespan and for each eliminated agent,

update the elite with the best solution from the agent’s milestones
5 if we have Tb-th iteration

create a new agent with q points in its lifespan,
assign a random solution the elite list to it,
let its local search length be (m+ 1)γ and increment m by 1

6 for each agent, perform local search for the number of iterations
determined by its local search length

7 for each agent, increase its lifespan to the initial value q if the agent
improved its fitness or decrease its lifespan by r if stagnation occured

8 return the best state ever found

this mutation rate, including the (1+1) EA, which will be
used within MEA.

Let us move on to the description of MEA. The pseu-
docode is given in Algorithm 2. In step 1, we generate agents
of an initial population P0. These agents carry random so-
lutions and are assigned q points to their lifespan. Also, the
basic local search length γ is assigned to each of them.

Then, an iterative procedure is performed. In step 3, we
decrease lifespans of each agent by 1 point. In step 4, we
eliminate agents with 0 lifespan and pass their recorded so-
lutions to the elite list. The step 5 is performed only each
Tb iterations and in this step, a new agent is born and a
solution from the elite list is assigned to it (we will describe
the elite list in more detail later). In step 6, each agent
performs certain number of local search iterations, in our
case (1+1) EA. Finally, in step 7, the agents’ lifespans are
changed according to the change in their fitness. Steps 3-7
are repeated, until a stopping criterion is met.

At this point, let us explain, how the elite list and the
local search subroutines work. At each generation, agents
perform a number of local search iterations (according to
their local search lengths) and arrive at final solutions for
that generation. These moments will be referred to as mile-
stones. During its life, the agent records the best solution
from the milestones.

At the moment, when an agent is eliminated, it passes
the best solution from its milestones to the elite list. This
solution is then accepted by the elite list if the currently
worst solution in the elite list is at most as good as this new
solution. If it is, the worst solution in elite list is replaced.
The size of the elite list will be denoted by |Le|.

Another mechanism is the agents’ birth. This happens
only each Tb iterations. At this moment, q points are as-

signed to the agent’s lifespan and a random solution from
the elite list is assigned to this agent.

In [2], the local search length for the agents in MEA was
determined by a problem-specific formula for graph color-
ing. Thus, in this paper, we have to generalize this length
specification. The basic idea was, however, that once we
are in an advanced stage of the search, it is good to extend
the length of local search subroutines. Therefore, we will
have a constant γ, which denotes the basic length of the
subroutine. The initial agents will perform γ iterations at
each generation. Then, each newly born agent will perform
γ more iterations, thus, m-th newly born agent will perform
(m+ 1)γ local search iterations.

The last issue to discuss in MEA is the evaluation opera-
tion in step 10. Originally, r points were given or taken from
the agent’s lifespan according to whether the agent improved
the fitness during the local search or not [2]. However, we
soon discovered that this way, agents are punished more fre-
quently than rewarded, especially on very hard landscapes.

Thus, in this paper, we use the following modified strat-
egy. If the final fitness of the agent is better than the initial
fitness, the lifespan is reset to the initial lifespan q. Oth-
erwise, it is decremented by r. This should improve the
fairness of this mechanism, since even for a small improve-
ment, the agent is largely rewarded, while for stagnation, it
is punished only mildly.

Summarizing the parameter “jungle”of MEA, we have ini-
tial population size |P0| and elite list size |Le|. For simplicity,
we will assume that |P0| = |Le|. In addition, we have the
initial lifespan q, birth period Tb, basic local search length γ
and punishment parameter r. Therefore, we have 5 param-
eters to tune.
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Table 1: The average fitness values for the best individuals in short-term runs of multi-start (1+1) EA with
different population sizes on different NK landscapes.

n k |P | = 1 |P | = 5 |P | = 10 |P | = 20 |P | = 50
n = 30 k = 2 21.942 22.108 22.108 22.108 22.108

k = 3 22.523 22.990 22.949 22.980 22.991
k = 4 22.609 23.440 23.281 23.378 23.478

n = 50 k = 2 37.041 37.574 37.519 37.578 37.580
k = 3 37.396 38.556 38.460 38.573 38.622
k = 4 37.421 38.891 38.625 38.816 38.880

n = 80 k = 2 58.517 59.135 59.089 59.125 59.211
k = 3 59.262 60.620 60.473 60.511 60.566
k = 4 59.709 61.261 61.267 61.245 61.400

4. EXPERIMENTAL RESULTS
In this section, we present the experimental results of

MEA on NK landscapes and their comparison to an equiva-
lent multi-start (1+1) EA. To ensure fairness, this algorithm
will have the same population size as is the initial population
size |P0| of MEA.

4.1 Experimental Settings
In [17, 18], NK landscapes with n ∈ [20, 56] and k ≥ 2

were used. The interactions between bits were generated
randomly and the values in the lookup tables were taken
from the uniform distribution over [0, 1). In [20], similar
settings were considered, with the difference that a higher
value of n = 100 was used with k = 2 and k = 3.

According to these results, we have chosen to use NK land-
scapes with parameters n = 30, 50, 80 and 120 and k = 2,
3 and 4. The interactions between bits and the values in
the lookup tables were generated uniformly at random, as
in [18]. For our empirical investigations, we used multi-start
(1+1) EA and confronted it with MEA with equivalent val-
ues both for initial population size and the predicted popu-
lation size, on which the value would stabilize if there was
no reinforcement mechanism. In the next section, we discuss
the way how we determined the parameter values for both
MEA and the multi-start (1+1) EA.

4.2 Tuning the Performance of MEA
The tuning process for parameters of MEA is partially

based on investigations in [2] and partially on some new
ideas. The general approach is based on observing the influ-
ence of changing one parameter, while the other parameters
remain fixed. However, reasonable values for some of the
parameters can be determined indirectly.

For determining the initial population size and the size of
the elite list |P0| = |Le|, we simply perform several short
runs of multi-start (1+1) EA on several NK landscapes.
The values for population sizes were 1, 5, 10, 20 and 50.
For all population sizes, we performed 10 runs on 10 differ-
ent independently generated NK landscapes with the same
parameters (since NK landscapes are stochastic functions),
where each run was limited to 1 second. CPU time limit
was chosen as a relatively fair stopping criterion for these
experiments and it also gives us the control of the length of
the experiment. The results are given in Table 1.

The results in Table 1 suggest that even the small value
|P | = 5 leads to solid improvement of results, when we com-

pare it to the simple (1+1) EA. For |P | = 10 and |P | = 20,
we interestingly often obtain a worsening, which can per-
haps be explained by the fact that the local search for a
single individual is shorter. However, for |P | = 50, the re-
sults start to be competitive again. The high number of
regions, where the search is performed, seems to outweigh
the shorther length of the local search. We add that this in-
vestigation is useful also for determining good values for the
initial lifespan q and the period of birth Tb. It can be eas-
ily shown that if reward / punishment factor was not taken
into account, the value, on which the population size would
stabilize over time, would be q/Tb.

For the rest of our tuning experiments, we chose |P0| =
|Le| = q/Tb = 50. The remaining values for parameters of
MEA have to be tested by changing the value of one parame-
ter and fixing the values for other parameters. After a series
of preliminary experiments, we chose a generic configura-
tion of MEA with the following parameters: initial lifespan
q = 50, period of birth Tb = 1, basic local search length
γ = 10 and r = 1. Practically, only 3 of these parameters
have to be tuned, since q/Tb is fixed to a constant. In these
second series of experiments, we extended the time limit to
10 seconds. Both the number of generated NK landscapes
and the number of repeated runs of MEA for a single NK
landscape remained 10. The following tuning were all per-
formed on instances with n = 80 and k = 4.

Table 2 summarizes the experiments, where we changed
the value Tb, which automatically led to q = 50Tb. We
merged the results of these experiments with results for the
basic local search length parameter γ, since there clearly is a
correlation between these parameters, which together influ-
ence the number of iterations that are performed by an agent
during its life. From the values in Table 2, we can see that
the results obtained here (fitness values 61.827−62.160) are
a little better than the results obtained in the first series of
experiments (fitness values 59.709 − 61.400). However, this
could be due to the higher time limit. Thus, this will be dis-
cussed further later, when we compare MEA to multi-start
(1+1) EA with the same population size and time limit.
MEA seems to give slightly better results for lower values
of γ. This can possibly be explained by the fact that for
NK landscapes with higher level of multimodality, a search
algorithm, which explores the search space in more possible
ways can have a better chance to escape local optima. How-
ever, changing the values of q and Tb does not seem to have
a significant impact. With small values of γ, the quality
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Table 2: The average fitness values for the best individuals obtained by MEA with different values of Tb and
γ on NK landscapes with n = 80 and k = 4.

γ = 1 γ = 2 γ = 5 γ = 10 γ = 20 γ = 30
Tb = 1, q = 50 62.136 62.160 62.055 61.893 62.031 62.033
Tb = 2, q = 100 62.056 61.827 61.896 61.908 61.987 61.960
Tb = 3, q = 150 62.037 61.936 61.930 61.970 62.017 61.900

Table 3: The average fitness values for the best individuals obtained by MEA with different values of r on
NK landscapes with n = 80 and k = 4.

r = 0 r = 1 r = 2 r = 3 r = 5 r = 10
62.171 62.340 62.316 62.174 62.134 61.881

seems to grow very slightly but for larger values of γ, the
obtained fitness declines. Therefore, it seems to be safer to
choose lower values for Tb, since (1+1) EA does not seem
to need many iterations for an improvement but it has to
choose the right sequence of random decisions in the search
process. This observation differs from the results in graph
coloring, where a different local search subroutine was used
[2].

In the last series of tuning experiments, we investigate the
influence of r, i.e. the punishment parameter on the quality
of results. We used 6 different values of r and compared
it on the instances with n = 80 and k = 4. The results
are presented in Table 3. For r = 0, we evidently have a
situation, when the population size can only increase, since
we have only positive reinforcement for the agents and their
lifespans. From the values of fitness, it seems that for low
non-zero values of r, the model is quite balanced and the
agents are able to obtain a very good fitness. On the other
hand, for r = 10, we clearly obtain the worst result, which
indicates that the agents are eliminated too soon.

4.3 Comparing the Performance of MEA and
Multi-start (1+1) EA

This section is dedicated to a comparison between simple
(1+1) EA, multi-start (1+1) EA and MEA on different NK
landscapes. This is the core of our experiments, where we
show that it makes sense to introduce the multiagent nature
and the lifespans to the search process.

We used the simple (1+1) EA with probability of bit flip
1/n for each bit. The multi-start (1+1) EA was the same
implementation with 50 starts from different randomly gen-
erated initial solutions. MEA was used with parameters
|P0| = |Le| = 50, q = 50, Tb = 1, r = 1 and γ = 1. As in
the tuning experiments, all algorithms were run 10 times on
10 independently generated NK landscapes with the same
values of n and k. Each run of each algorithm was limited
to 10 seconds.

Table 4 shows the average fitness values obtained over all
runs of each algorithm on all NK landscapes with particular
values of n and k. Thus, all the three algorithms were tested
on the same instances, with the same fitness values of local
and global optima. This, along with the stopping criterion
defined by time limit, makes the comparison very fair, since
the algorithms have the same practical conditions.

Table 4: A comparison of average fitness values ob-
tained by simple (1+1) EA, multi-start (1+1) EA
with population size 50 and MEA with the same ini-
tial population size on different NK landscapes.

simple multi-start
n k (1+1) EA (1+1) EA MEA
n = 30 k = 2 22.283 22.413 22.413

k = 3 22.397 22.778 22.779
k = 4 23.121 23.826 23.819

n = 50 k = 2 37.026 37.433 37.424
k = 3 37.849 38.761 38.716
k = 4 37.680 39.178 39.165

n = 80 k = 2 58.882 59.619 59.604
k = 3 59.812 61.620 61.632
k = 4 60.155 61.879 61.881

n = 120 k = 2 88.242 89.287 89.430
k = 3 89.828 91.607 91.844
k = 4 89.974 91.866 92.294

From Table 4, we can see that the average improvement
obtained by using a multi-start version of (1+1) EA ranges
from 0.13 to 1.892. By introducing the multiagent nature
of MEA, we obtain a change in the average fitness, which
seems to depend on the values of n and k. For n = 30, the
results of multi-start (1+1) EA and MEA are comparable,
which is probably due to the easiness of the instances. For
n = 50, MEA is slightly worse, with the average decline
ranging from 0.013 to 0.045. However, for n = 80, we have
a situation, where for k = 2 MEA is still worse but for k = 3
and 4, it becomes dominant. Finally, for n = 120, we obtain
that MEA clearly beats multi-start (1+1) EA by a factor
ranging from 0.143 to 0.428.

At this point, let us further discuss how the fitness values
change both in MEA and multi-start (1+1) EA at some
point of the algorithms. This provides some insight into the
difference between behavior of these algorithms. In Figure 1
and Figure 2, we plot the profiles of average obtained fitness
values during the optimization over 10 indepedent runs on
10 different NK landscapes with the same values of n and
k. The x axis contains the number of fitness calls, while the
y axis contains the currently best fitness values. For MEA,
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Figure 1: The illustration of the change in fitness
of the best solutions for MEA (both the population
and the elite list) and multi-start (1+1) EA on NK
landscapes with n = 50, 2 ≤ k ≤ 4. The x-axis denotes
the number of fitness calls and the y-axis denotes the
average value of best fitness obtained over the runs
of the algorithms.

22.76

22.762

22.764

22.766

22.768

22.77

22.772

22.774

22.776

22.778

22.78

1e+006 2e+006 3e+006 4e+006

n = 30, k = 3

MEA (population)
MEA (elite list)

Multi-start (1+1) EA

38.3

38.4

38.5

38.6

38.7

38.8

1e+006 2e+006 3e+006 4e+006

n = 50, k = 3

MEA (population)
MEA (elite list)

Multi-start (1+1) EA

89

89.5

90

90.5

91

91.5

92

0 500000 1e+006 1.5e+006 2e+006

n = 120, k = 3

MEA (population)
MEA (elite list)

Multi-start (1+1) EA

Figure 2: The illustration of the change in fitness
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landscapes with n = 30, 50 and 120 and k = 3. The
x-axis denotes the number of fitness calls and the
y-axis denotes the average value of best fitness ob-
tained over the runs of the algorithms.
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we include the best values both for the population and the
elite list. Figure 1 illustrates the fitness profiles for instances
with n = 80. These pictures show that MEA is better than
multi-start (1+1) EA for k = 3 and 4, while for k = 2, the
situation is reversed. Also, the profile of MEA indicates that
at the beginning, its behavior is similar to multi-start (1+1)
EA. However, a mild decline in fitness tends to occur after
the initial population starts to be eliminated. Then, MEA
slowly starts to beat multi-start (1+1) EA.

In Figure 2, we illustrate the influence of n on the results,
where we have the profiles for instances n = 30, 50 and 120
and k = 3. For n = 30, the fitness profile of MEA clearly
indicates that unlike multi-start (1+1) EA, our algorithm
naturally attempts to diversify the search. For n = 120,
we can also see that MEA starts to obtain better solutions
for large instances slowly, however, reasonably. In all cases,
the observed behavior of MEA indicates that this is an al-
gorithm, which relies on a temporary worsening of fitness,
similarly to simulated annealing [10, 22].

Thus, MEA not merely improves the results of simple
(1+1) EA, but it also is able to significantly improve the
results of a population-based version of (1+1) EA with the
same initial population size. Additionally, the improvement
occurs in harder instances of the problem. Hence, MEA
clearly does not profit only from the parallel search in more
different regions. This is a highly encouraging result, since
for the first time, we managed to show very clearly that the
improvement is obtained purely on the basis of lifespans,
well-tuned restarts and variable population size. When we
compare these results to those published in [2], we can see
more clearly that the mechanisms used in MEA are not only
a collection of techniques, which were somehow able to ob-
tain solid results in graph coloring. In addition, NK land-
scapes with the chosen values of k are quite representative
fitness functions, since the problem is NP-hard but in some
sense, it is “easier” because of the low values of k, which in-
duce only a low level of interactions between components of
the problem. Despite this fact, we can see that even on such
problems, multi-start (1+1) EA can be beaten by using the
emergent multiagent nature of MEA.

5. CONCLUSIONS
We proposed an adaptation of a relatively recently intro-

duced multiagent evolutionary algorithm (MEA), which was
originally intended as a metaheuristic approach to graph col-
oring problem. However, MEA uses relatively general mech-
anisms, where the core idea is based on simulation of a life
cycle of agents, which perform local search. Each agent has
its lifespan, which is influenced by its ability to improve fit-
ness. Thus, MEA is an algorithm with variable population
size. In this paper, MEA was adapted to search on NK
fitness landscapes, which are very popular in evolutionary
computation for the tunability of ruggedness. Additionally,
unrestricted NK landscapes, which we used in this paper,
are a typical example of an NP-hard problem.

Our experimental results confirmed that the mechanisms
used in MEA are beneficial in optimization on NK fitness
landscapes. This is the first time, when we were able to
show that the improvement by MEA is definitely caused
by the lifespans, reinforcement mechanisms and the well-
tuned restarts, which can be considered to be a variant
of “swarming” effect. For harder instances of the problem,
MEA achieved higher fitness than an equivalent multi-start

(1+1) EA with the same population size. The improvement
factor achieved by MEA on NK landscapes for high values
of n and k was encouraging. This definitely shows that the
emergent multiagent nature of MEA is beneficial in opti-
mization, especially on larger and more rugged landscapes.
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