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ABSTRACT

Using mobile devices to support the evacuation of a build-
ing is a relatively new and promising research field. An
essential requirement to realize this endeavor is to be able
to track the location of the mobile devices. Since GPS is
generally not available in buildings, alternative localization
methods, i.e. methods to determine the devices’ locations,
need to be used. Many of these alternative localization algo-
rithms use a small number of so called anchor nodes which
are assumed to know their positions to derive the locations
of all other devices in the network. The placement of these
anchor nodes is essential to the accuracy of the derived lo-
cations and has, so far, been mainly studied for static net-
works. Mobile networks pose different challenges, especially
when used for evacuation support, where devices are simul-
taneously moved towards the exits of a building. Here, we
present an Evolutionary Algorithm in combination with a
multi-agent simulation to optimize the placement of anchor
nodes in order to localize devices during evacuation. It is
shown that the proposed Evolutionary Algorithm is a suit-
able instrument to find a good placement and some essential
criteria for such a placement are identified.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design —Distributed networks, Network
topology

Keywords

Evolutionary Algorithm, Mobile Ad Hoc Networks, Local-
ization, Evacuation

1. INTRODUCTION
The fast growing world population increases the demand

for buildings to become larger and more complex. At the
same time, progress in architecture and civil engineering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO ’13 Companion, July 6-10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

makes the construction of such buildings realistic and afford-
able. In contrast to the advancements in building construc-
tion, their preparation for evacuation in case of an emer-
gency is comparatively underdeveloped. In general, there
are static and analogous signs distributed in the buildings
which are supposed to guide people to exits. The main prob-
lem with these installations is that they are easy to over-
look and cannot adapt to the current situation. For exam-
ple, blocked passages, due to fire, smoke, damaged walls, or
waiting people are not recognized and treated respectively.
On the other hand, the increasing number of mobile devices
with wireless communication abilities opens up a new possi-
bility for evacuation support in buildings. Ideally, a person
is alerted by its smart phone in case of an emergency via
ringing or vibrating. A map of the building is then dis-
played on its screen and the user can be guided safely to
an exit by pointing out the right direction. The advantage
of using mobile devices is that they can be carried around
and the information displayed on the screen is adaptable to
the current situation. When mobile devices are able to com-
municate with other nearby devices, they form spontaneous
networks, so called mobile ad hoc networks (MANETs) [13].
In these networks, messages can be forwarded by other de-
vices enabling a multi-hop communication which can be used
to transport information over longer distances. For exam-
ple, fire sensors could inform nearby mobile devices about
dangerous areas and this information can be forwarded to
other devices in the network via multi-hop communication.
In order to be able to guide its user to an exit, the device
must know its current position in the building and, with
GPS not being available indoors, this alone becomes a chal-
lenge. On the other hand, GPS-less localization of devices
in ad hoc networks is a well-studied task (cf. [2] for an
overview). Many of the proposed localization algorithms
make use of special devices, so called anchor, which know
their locations, for example due to a priori configuration,
and are used to derive the positions of the other devices in
the network. For building evacuation support, it is conceiv-
able to distribute such static anchor devices in a building and
configure their individual location information. A building
equipped like this could enable the localization of mobile de-
vices and consequently provide navigation support in case of
an emergency.

The placement of anchor nodes plays an important role
for the quality of the derived locations [21, 2] and the ques-
tion arises where the anchor nodes should ideally be placed
in order to make localization as good as possible. So far,
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localization and associated with it the optimal placement of
anchor nodes are mainly studied for static networks. While
anchor placement in static networks can often be reduced
to an optimal coverage problem, this is not necessarily the
case for dynamic networks. Mobility is accompanied by dif-
ferent demands for anchor node placement because the con-
nectivity of the network and, as a consequence, the ability
to communicate with certain static anchor nodes varies over
time. During evacuation, for example, all devices are moved
simultaneously towards certain directions, leaving parts of
the building empty and others more frequented. Intuitively,
one might expect anchor nodes to be more important in
higher frequented areas but since the density of mobile de-
vices is higher there as well, the chance to maintain connec-
tion between mobile and anchor nodes via multi-hop com-
munication is better compared to low density regions. As a
result, less anchor nodes might be needed to supply the de-
vices with information. Additionally, the position informa-
tion of at least three anchor nodes is needed for localization
[21], which distinguishes the problem further from an opti-
mal coverage problem where coverage from one node can be
enough. Placing three anchors close together might be of
more use than a uniform placement, even though, overall a
smaller area is covered.
Little is known about the characteristics of a good solution
and the search space is large since we are looking at a steady
two or even three dimensional environment. For these rea-
sons and in accordance with the criteria listed in [7], we ap-
proach the problem with an Evolutionary Algorithm (EA),
i.e. a heuristic optimization and search method based on
the principles of natural evolution. For this, an appropriate
evaluation method is needed to assess the quality of a given
solution. Here, we use a multi agent simulation (MAS) to
evaluate the accuracy of the localization of mobile devices
in a simulated building evacuation scenario given a specific
anchor node placement.
Experiments show that the scenario indeed differs from an
optimal coverage problem and that the proposed Evolution-
ary Algorithm optimizes the placement of anchor nodes for
a building evacuation supported by mobile devices.
This paper is structured as follows. Section 2 gives an
overview of related work and Section 3 introduces the rel-
evant basics. In Section 4 the design of an Evolutionary
Algorithm for optimal anchor node placement is explained
in detail and experiments to investigate the performance of
the proposed algorithm are presented in Section 5. Section
6 concludes the paper.

2. RELATED WORK
Using mobile devices for building evacuation support is a

relatively new research area and there are only few publi-
cations addressing this scenario. In [28], it is proposed to
use mobile devices which are able to read QR-codes or scan
RFID chips distributed in the building. This location in-
formation is sent to a central server which calculates a load
balanced route for all devices in the building. The evacua-
tion system proposed in [6] consists of a static sensor net-
work and a dynamic network of mobile devices, similar to
the scenario proposed here. The mobile devices connect to
nearby sensor nodes in order to gain information about the
condition of corridors lying ahead. In contrast to our work,
sensor node placement and their usage for localization are
not considered. Merging GPS-less localization with a build-

ing evacuation scenario, is suggested in [12] and [19]. While
[12] concentrates on the localization service, [19] focuses on
the routing and a distributed evacuation planning approach
is proposed which assumes known locations for the mobile
devices.
Optimal node placement in sensor networks receives some
attention. However, the main focus lies on achieving an op-
timal coverage of a certain area while simultaneously min-
imizing the necessary number of nodes (cf. for example
[8, 15, 26, 14, 4]). In general, this problem is referred to
as minimum disc cover problem and can be solved in time
O(n log n) with n denoting the number of nodes in the
network (cf. [27]). Besides, there is some work concerned
with anchor node placement for localization in static sensor
networks. For example, in [25], it is recommended to place
anchor nodes at the edges of a sensor network field. In [1]
and [29] guidelines for anchor node placement for specific
localization algorithms are developed. [3] introduces an ap-
proach for adaptive anchor placement in case of node failure
and similar events. [24] shows a lower bound for localization
accuracy and investigates the impact of anchor node place-
ment. Using mobile anchor nodes to improve localization is
subject to research in [17] and [16].

3. BASICS
In the following, the basics of Evolutionary Algorithms

and anchor based localization in MANETs are explained and
an algorithm to compute the coverage-degree of an anchor
node placement is introduced which is then, among other
methods, used for evaluation of specific anchor node place-
ments in the Evolutionary Algorithm.

3.1 Evolutionary Algorithms
Evolutionary Algorithms (EAs) represent a search strat-

egy following the example of natural evolution based on Dar-
win’s theory [5]. Genetic operators known as reproduction,
mutation, and selection are used in order to search for good
solutions to a given optimization problem. Figure 1 visual-
izes the process.

Create 
Population 

Select 
Mating Pool 

Recombination 

Mutation 

Fitness 
Evaluation 

Check 
Termination 

Figure 1: Procedure of an Evolutionary Algorithm.

Initially, a set of possible solutions, which is called a pop-
ulation, is chosen, for example randomly. Each individual is
evaluated with respect to the given optimization objective
and a fitness value is assigned to it representing its quality
with respect to the objective. In the next step, several in-
dividuals are selected for recombination where their genome
is merged in order to form new individuals, so called chil-
dren. These children are subsequently modified (mutation)
and the next population is created. The exact implementa-
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tion of the genetic operators can vary and is determined in
Section 4. The process is repeated iteratively for a certain
time or until a sufficiently good solution is available. For
more details refer to [30, 7].

3.2 Anchor-Based Localization in MANETs
For the localization of a device in multi-hop communica-

tion networks a method called Multilateration can be used
[21]. For this, all devices forward known coordinates of an-
chor nodes and estimate their distances to these anchors.
When three anchor nodes’ positions are known, the devices
iteratively compute their own coordinates by minimizing the
error between estimated distances and real distances. Al-
gorithm 1 shows the necessary computations. The search
for coordinates finishes when the error improvement is not
greater than a specified value ǫ.

Algorithm 1 Computes coordinates for device i using iter-
ative Multilateration according to [21]

Require: Set of anchor coordinates Ci, set of distance es-
timates to these anchors D̂i

1: Select closest anchor m with d̂im ← min(D̂i)
2: Initialize: c̄i ← cm ∈ Ci, ∆(E) =∞
3: while ∆(E) > ǫ do
4: coordinates ci = (xi, yi)← c̄i
5: ∆xi ← 0, ∆yi ← 0
6: for all ca ∈ Ci do
7: dia = EuclideanDistance(ci, ca)

8: E ← E + (dia − d̂ia)
2

9: ∆xi = ∆xi + (xi − xa)(1− (dia/d̂ia))

10: ∆yi = ∆xi + (yi − ya)(1− (dia/d̂ia))
11: end for
12: New coordinates: c̄i = (xi − α ∆xi, yi − α ∆yi)

13: Ē =
∑

Ci
(EuclideanDistance(c̄i, ca)− d̂ia)

2

14: ∆(E) = E − Ē
15: end while
16: return coordinates for device i: ci

There are various methods for the estimation of distances
to anchor nodes (cf. for example [22, 21, 11, 18, 9, 20]).
Here, we implement two distance estimation algorithms which
are based on different concepts so we can subsequently in-
vestigate the impact of the selected distance estimation al-
gorithm on the evolved anchor node placement.

3.2.1 Hop Count Based Distance Estimation

Firstly, the minimum number of communication hops be-
tween the mobile devices and the anchor nodes are deter-
mined. For this, the anchor nodes send messages with value
0 and each device collects the messages received from its
neighbors, i.e. devices within communication range. The
minimum value is then selected and incremented by 1 in
order to compute its own hop count which it, in turn, com-
municates to its neighbors. After some time, all devices in
the network know their hop count and the distance estimate
is calculated using Equation 1.

d̂ia = r · (
hia +

∑
j∈Ni

hja

|Ni|+ 1
− 0.5) (1)

With Ni denoting the set of neighbors of device i, d̂ia the
distance estimate and hia the hop count between i and an-

(a) The central
node 2nd-degree
covers an area.

1st-degree cover 

2nd-degree cover 

(b) Treatment of overlapping perime-
ter covers.

Figure 2: Perimeter coverage illustrations.

chor a, and r the equal and known communication range.
The computations to determine a device’s hop count, dis-
tance estimate, and coordinates are constantly repeated in
order to be able to adapt the coordinates to a new position
after the device has been moved.

3.2.2 Geometric Distance Estimation

The second distance estimation approach is presented in
[20]. Here, the distance estimate between two neighbors
is derived from the ratio of shared to total communication
partners using Equation 2.

d̂ia = d̂ja + r · (3.9R3 − 4.16R2 + 3.04R+ 0.04) (2)

With r denoting the equal and commonly known commu-
nication radius, j being the neighbor of i with minimal dis-

tance estimate d̂ja with respect to anchor a, and R =
|Sij |

|Ni|
,

with Sij denoting the set of common neighbors of device i
and j and Ni the set of all neighbors of i. Similar to the
hop count based approach, the anchor node sends a message
with value 0 indicating a distance estimate of 0 and each de-
vice looks for the neighbor which communicates the minimal
distance estimate. The device then estimates its distance to
this neighbor using Equation 2 and adds this value to the
neighbor’s communicated distance estimate. Now, the de-
vice in turn is able to communicate its estimate and sends a
message which contains the calculated value. The process is,
again, constantly repeated to be able to adapt the estimate
when a device is moved.

3.3 Perimeter Coverage Approach
In [10], an approach is presented to compute the coverage

degree of an area occupied by a network of nodes. The al-
gorithm decides if and how often the perimeter of a node,
i.e. the border of its communication range, is contained in
the communication range of other nodes. An area which
is not within communication range of a node is denoted as
uncovered. An area which is covered by a node without
perimeter coverage is denoted as one-degree covered. If an
area is covered by a node with a perimeter that in turn is
covered n times, the area is denoted as (n + 1)-degree cov-
ered. Figure 2(a) shows an example two-degree covered area.
If two adjacent nodes cover the same slice of the perimeter
the overlapping part is counted for the next coverage degree.
Figure 2(b) illustrates this procedure.
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ID x y 

1 1 13 

2 3 6 

3 5 11 

4 5 2 

5 9 5 

6 12 11 

Genome 

y-Axis 

x-Axis 

Individual 

Figure 3: An individual anchor node placement and
its genetic representation.

4. EVOLUTIONARY ALGORITHM FOR AN-

CHOR PLACEMENT IN MANETS
To optimize anchor placement for localization of mobile

devices, we design an Evolutionary Algorithm as follows.
The genome of one individual in the population is selected
to be a set of two-dimensional coordinates, each representing
the position of one anchor node. Figure 3 shows an example
for one individual and its genetic representation.

4.1 Selection
During the selection process, a certain number nparents of

individuals are chosen from the population which are then
used to create descendants by recombination. We decided
for a standard selection method, called binary tournament
selection, where two individuals are randomly selected from
the population and compared with respect to their fitness
value. The individual with higher fitness is then added to
the mating pool. Both individuals stay available for fur-
ther selections. The calculation of an individual’s fitness
value is described in Section 4.5. Figure 4 illustrates the
tournament-selection process.

ID fitness 

1 36 

2 3 

3 16 

4 5 

random 

selection 
ID fitness 

1 36 

4 5 

ID fitness 

1 36 fitter 

individual 

Population 

Tournament 

Mating Pool 
incomplete mating pool 

Figure 4: Illustration of the tournament-selection.

4.2 Recombination
For recombination, two random individuals are chosen

from the mating pool and recombined to create two chil-
dren. For the recombination procedure we implemented two
standard approaches which are both tested in the experi-
ments. The first recombination is called uniform crossover
where the genomes of the parents are traversed and for each
gene it is decided with a probability p to be part of the
first or, otherwise, second child. The second recombination
procedure is called one-point crossover. Here, a random po-
sition is selected at which the genomes from both parents
are cut. The first child consists of the first half of the first
parent and the second half of the second parent and vice

versa for the second child. Figure 5 shows an example for
both recombination approaches.

Parent 1 
x 1 3 5 5 

y 13 6 11 2 

x 5 4 10 3 

y 5 2 1 4 

Parent 2 

x 5 3 5 3 

y 5 6 11 4 

p 

1 - p 

Mating Pool 

randomly select 

x 1 4 10 5 

y 13 2 1 2 

Child 1 Child 2 

(a) Uniform crossover.

Parent 1 
x 1 3 5 5 

y 13 6 11 2 

x 5 4 10 3 

y 5 2 1 4 

Parent 2 

x 1 3 5 3 

y 13 6 11 4 

Mating Pool 

randomly select 

x 5 4 10 5 

y 5 2 1 2 

Child 1 Child 2 

(b) One-point Crossover.

Figure 5: Implemented recombination operators.

4.3 Mutation
When recombination is completed, the created children

are mutated as follows. With a certain probability pmut a
number nmut genes are altered according to equation 3.

c = (N (x, σ),N (y, σ)) (3)

With c denoting the new coordinates after mutation, x
and y represent the two-dimensions of the coordinates be-
fore mutation andN (m,σ) is a normally distributed random
value with mean m and standard deviation σ. Using a nor-
mal distribution for finding new coordinates ensures that the
new coordinates are around the current ones, with the pos-
sibility to adjust the proximity by modifying the standard
deviation.

4.4 New Population
To create the new population for the next iteration of the

evolutionary algorithm, the (µ+λ) approach is taken where
µ denotes the size of the current population and λ describing
the number of children. Here, the next generation is built
by selecting the µ-best individuals from the combined set of
old population and children [30].

4.5 Fitness Evaluation
For fitness evaluation, we propose two methods. Firstly,

a multi agent simulation is used in which all agents, i.e. de-
vices in the mobile ad hoc network, compute their location
applying the algorithm described in Section 3.2 with either
of the suggested distance estimation techniques (Hop count
is further denoted as HC and Geometric distance estima-
tion as Geo). The fitness of an anchor node placement is
calculated as the average deviation between real and esti-
mated positions of the devices during a simulation period
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T . For this, the simulation duration T is divided into time
steps t after which the localization is recomputed. After
recomputing their location, the devices are moved towards
a designated exit (cf. Section 5.1 for details). The fitness
value is defined as the reciprocal of the average deviation.
Equation 4 describes the fitness evaluation with simulative
localization. D is the set of all devices, ct(d) denotes the real
position of device d at time step t, and ĉt(d) its estimated
position.

FPos(HC/Geo) =
|T | · |D|∑

t∈T

∑

d∈D

|ct(d)− ĉt(d)|
(4)

Additionally, we propose a fitness value which computes
the percentage of devices which estimate their position to
be in the correct room of the considered building environ-
ment as shown in Equation 5. We choose this criteria since
estimating the correct room might be enough to navigate
people to a safe exit during evacuation.

FRoom =
1

|T |

∑

t∈T

1−
|{d ∈ D : room(ct(d)) = room(ĉt(d))}|

|D|

(5)
Besides, the perimeter coverage described in Section 3.3 is

used to compute a fitness value for an individual. For this,
the considered building environment is discretized into a cer-
tain number of squares and for each square the coverage-
degree is computed. Since the position information of three
anchor nodes is needed for localization, we define a third-
degree covered area to be most valuable. Equation 6 shows
the fitness calculation for an individual. S denotes the set
of squares in the environment.

FPC =
3∑

i=1

i ·

∑
s∈S

i-cover(s)

|S|
(6)

With i-cover(s) = 1 if square s is i-th-degree covered.

5. EXPERIMENTS
Experiments are performed to test the effectiveness of the

presented Evolutionary Algorithm and to compare the per-
formance of the proposed fitness evaluation methods. For
this, a building evacuation scenario is simulated as follows.

5.1 Simulation and Settings
The simulation of a building’s evacuation is set up by plac-

ingD mobile devices randomly in an environment which rep-
resents the building. The environment is simulated as a two-
dimensional square plane which is discretized into squares
and each agent, i.e. mobile device, occupies one square and
can move to a square within its von Neumann neighborhood
(cf. Figure 7(a)) at each time step t. The square has to be
empty, which means it cannot be occupied by another agent
or be a part of a wall. Figure 6 illustrates the experiment
scenario.
If there is no free square in the von Neumann neighbor-

hood, the Moore neighborhood (cf. Figure 7(b)) becomes ac-
cessible for movement. While respecting this rule, all agents
are moved on the shortest path towards a designated exit.
The agents are able to exchange messages at each time

step t with all agents within their communication range, i.e.

EXIT 

Figure 6: Evacuation scenario with mobile devices
(grey circles with arrows) and anchor nodes (black
circles).

(a) (b)

Figure 7: Von Neumann (a) and Moore (b) neigh-
borhood.

agents that are located at a distance less or equal to r, be-
fore they are moved. This reflects the fact that the device
does not know if it is moved and, as a consequence, is not
able to determine its new location directly after each move-
ment. All specified dimensions are measured relative to the
width (height) of the rectangular plane which has a width
(and height) of 1. This allows an easy translation of the
simulative results to a building with arbitrary dimensions.
The communication range r is set to 0.1 which, thus, corre-
sponds to 10% of the plane’s width (height). For a detailed
description of the simulation environment, refer to [19]. The
parameters for the Evolutionary Algorithm are listed in ta-
ble 1.

To be able to assess how much two individuals differ from
each other, the Hausdorff-distance [23] is used as shown in
Equation 7. A(i) refers to the set of anchor nodes from
individual i.

hd(i, j) = max∀ai∈A(i)(minaj∈A(j)d(ai, aj)) (7)

The Hausdorff-distance is zero for identical individuals
and otherwise reflects the maximum distance between an an-
chor node from individual i and the closest anchor node from
the other individual j. Since hd(i, j) and hd(j, i) are not
symmetric, we compute the average as hdij = 1

2
(hd(i, j) +

hd(j, i)).

Parameter Name Value
Population size (µ) 10
Probability for mutation 0.3
Standard deviation for mutation 0.05
Mating pool size (nparents) 10
Number of anchor nodes 20
Number of mobile devices / agents 100
Evolutionary iterations 1000

Table 1: Parameter settings in the experiments.
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Figure 8: Progress of fitness during evolution.

5.2 Results and Discussion
At first, we look at the behavior of the fitness value during

evolution. Figure 8 shows this progress for the four proposed
fitness evaluation criteria using the two recombination op-
erators introduced in Section 4.2.
We tested a mutation of 1 and 5 genes per iteration each

with a probability of 0.3. It can be observed, that the fit-
ness increases for all proposed fitness criteria during evolu-
tion. When comparing the fitness value of both simulative
approaches, it becomes apparent, that localization with hop
count based distance estimation achieves lower localization
error (deviation of estimated from real coordinates) than
Geometric distance estimation. This comes as a surprise,
since the Geometric distance estimation is shown to be more
accurate in [20]. There are two possible reasons for this be-
havior. Firstly, the Geometric localization is less suitable for
networks with a directional movement or, secondly, finding a
good anchor placement for Geometric localization is harder
than for a hop count based localization approach. Figure 9
displays the individuals from the final population with the
highest fitness values FPos(HC) and FPos(Geo).
It becomes obvious, that a good anchor node placement

for Geometric localization looks differently from a good an-
chor node placement for hop count based localization. The
corresponding average Hausdorff-distance is hdHC,Geo = 0.25.
Hence, the used localization algorithm on the mobile devices
plays an important role, when optimizing the anchor place-
ment in a building.
To make the results from all four Evolutionary Algorithms
comparable, we take the final population and compute the
localization error with hop count based localization in a sim-

Best Indiv (Fitness) (uc5: 29-2)

(a)

Best Indiv (Fitness) uc5: 33-9

(b)

Figure 9: Individual with highest fitness value using
simulative Geometric localization (a) and hop count
based localization(b).
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Figure 10: Comparison of the last populations
evolved with various fitness criteria in terms of lo-
calization error.

ulative run, since the results for this localization approach
are better. Figure 10 shows the comparison.

The localization error is lowest with individuals evolved
using the simulative hop count based localization as fitness
criteria. The perimeter coverage results are only slightly
worse, followed by the simulation with Geometric localiza-
tion and individuals evolved using correct room mapping
criteria. From this evaluation, it becomes apparent that a
low localization error is not necessarily the same objective
than a good room mapping of the resulting coordinates. Be-
sides, it is noticeable, that the individuals evolved with the
perimeter coverage fitness criteria perform almost as well
as the population evolved with simulative hop count based
localization. At first, this seems to contradict the initial
considerations about the difference between an optimal cov-
erage problem and an optimal anchor node placement for
mobile networks, but this can be refuted by further inves-
tigations. Figure 11 displays the two best individuals from
the perimeter coverage evolution in terms of fitness (a) and
localization error (b).

While the fitter individual has a wider area covered by
anchor nodes, the individual with lower localization error
has a sightly denser anchor node placement leaving more
squares uncovered. We conclude that the emphasis on third-
degree coverage is the reason for the good performance of the
perimeter coverage evolution rather than pure area coverage.
Figure 12(a) displays the best individual in terms of localiza-
tion error from the final population evolved with simulative
hop count based localization. This seems to confirm our
initial assumption that placing anchors along a path which
leads to an exit seems advisable. When comparing the re-
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Best Indiv (Fitness) (uc5: 8-0)

(a)

Best Indiv (Error) (uc5: 35-0)

(b)

Figure 11: Individuals with highest fitness value
(a) and lowest localization error (b) evolved with
perimeter coverage fitness criteria.

Best Indiv (Error) uc5:34-1 

(a)

Best Indiv (Error) uc5: 2-2 

(b)

Figure 12: Individuals with lowest localization error
evolved using simulative hop count based localiza-
tion (a) and correct room mapping (b).

sults with the best perimeter coverage individual in Figure
11 (b), the evolved anchor placements look rather different.
In fact, their average Hausdorff distance is hdPC,HC = 0.25.
On the other hand, the average localization error for both
individuals is very similar with 0.11 for perimeter coverage
and 0.10 for simulative hop count based localization. We
conclude from this, that an optimal placement has to fulfill
both criteria, being close to the path leading towards the exit
and at the same time having good third-degree coverage.
The importance of a dense anchor node placement is rein-

forced when looking at the best individual in terms of fitness
evolved with the room mapping fitness criteria illustrated in
Figure 12(b). Obviously, coordinates can be mapped well to
their corresponding room when anchors are placed densely,
although the coordinates have a comparatively high error
(cf. Figure 10). As a consequence, it is essential for the
placement of anchor nodes to know whether localization er-
ror or correct room mapping has higher priority for the spe-
cific application case of the MANET.

6. SUMMARY AND CONCLUSION
We present an Evolutionary Algorithm in order to opti-

mize the placement of static anchor nodes for distributed
range-free localization in a mobile ad hoc network. The ap-
plication scenario we are looking at is the evacuation of a
building where mobile devices are used for navigation. The
evacuation scenario poses special challenges to an optimal
anchor placement because the devices are moved simulta-
neously towards the direction of building exits. Hence, we
argue and confirm in experiments that optimizing the cov-

erage of the anchor nodes is not enough to achieve good lo-
calization results. In simulative experiments, we investigate
the presented Evolutionary Algorithm and compare two re-
combination operators and four different fitness evaluation
criteria. Two of these criteria are simulative approaches
which use a multi agent evacuation simulation and two dif-
ferent range-free localization algorithms. We show that the
selected algorithm influences the evolved anchor placements.
Further, an algorithm to determine the coverage degree of
nodes in a sensor network is modified and used as fitness
criteria. With this approach we reach a similar localization
error compared to the simulative localization which has the
lowest localization error. At the same time, there is no need
for a computational intensive simulation of the evacuation
scenario. It is further shown that minimizing the localiza-
tion error leads to different anchor placements compared to
the objective of finding the right room with the calculated
coordinates. In summary, anchor placements alongside a
path which leads towards an exit, as well as a high third-
degree coverage are identified to be essential criteria for low
localization error. For future work, we want to refine the
configuration of our Evolutionary Algorithm and combine
the presented fitness criteria.
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