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ABSTRACT
In this work we analyzed the role social networks play in the
efficiency of collective problem-solving, evaluating whether
the topological characteristics seen in real-world networks
yield any performance improvement in such processes. To
study this we used the Particle Swarm Optimization as a
testbed for social groups performing a collective task, defin-
ing the structure of communication between individuals in
the swarm through topologies generated by a model for the
creation and evolution of social networks. The experimental
results indicate that groups using these networks may, in-
deed, experience better performance in collective problem-
solving, so that these groups were able to overcome the re-
sults achieved by swarms using classical neighborhoods for
PSO and reached results very close to those found by swarms
using the topology of DMS-PSO, usually considered to be
part of the state-of-the-art of Particle Swarm Optimization.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent systems; I.6 [Simulation and model-
ing]: Miscellaneous

Keywords
particle swarm optimization, collective intelligence, complex
networks, complex systems

1. INTRODUCTION
Between all vertebrates, primates stand out as a group

possessing large brains relative to their bodies, with the hu-
mans being the species with largest brain-body size ratio
[10]. Despite accounting for only 2% of adult total body
weight, human brain is responsible for 25% of glucose con-
sumption, 20% of oxygen demands and 15% of total cardiac

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

output [18]. Given this high metabolic cost it is hard to
imagine that this scenario is only due to a fluke. There-
fore, it seems of great relevance to study the evolutionary
forces that induced this enlargement of primate brains, eval-
uating the competitive advantages that compensates such a
high demand for energy. There are some hypotheses aim-
ing at explaining encephalization and that are supported
by a number of evidences. One family of theories are the
ecological hypotheses, proposing that primate species need
larger brains due to a more complex set of skills required by
their foraging patterns and for manipulating their food (e.g.:
extract pulp from fruits or termites from a mound) [4]. An-
other theory, known as social brain hypothesis, argues that
this increase is a consequence of the higher computational
demands associated with maintaining larger social groups
[4]. Some evidences supporting this idea are the dispro-
portional increase in primates (and specially in humans) of
brain areas related to social aspects of cognition, language,
forecasting peer actions and affective behavior, like neocor-
tex [6] and orbital prefrontal cortex [21, 26], and the fact
that these regions are among the most recent areas to suffer
development in human evolution [21].

As recent studies indicate [20], networks of human social
contacts have some non-trivial characteristics, like small dis-
tances, high clustering and power-law degree distribution,
that are also exhibited by social networks of other animal
species, as well as by technological and biological networks.
Are these widespread characteristics product of optimiza-
tion, of restrictions inherent to the individuals or to the
environment, or of mere chance? Assuming that the so-
cial brain hypothesis is true and having in mind not only
the energy demand of a larger brain but also the evolution-
ary cost of adaptation that enables humans to make use
of sophisticated language, the individual risks of coopera-
tion with others and the optimizing nature of any evolution-
ary process, it is reasonable to imagine that groups making
use of these structures were positively selected by evolution.
The rationale behind this supposition is mainly associated
with the fact that fitness improvement arises due to a better
communication structure, a view corroborated by evidence
long known in Psychology indicating that the structure of
networks of contacts between agents affects group perfor-
mance in problem-solving situations [2, 14]. For instance,
human groups with sparse connections between their mem-
bers score better than highly connected groups at solving
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complex problems [9], as groups with excessive communica-
tion tend to converge too quickly, but to the wrong answer.
In easy problems, however, highly connected groups perform
better than sparse groups [17].

In this work we intend to analyze the optimality of real-
istic social networks when applied to shape communication
between a group of individuals dealing with real-world prob-
lems. With this aim, we evaluated the impact of different
structures of communication within a group on the effec-
tiveness of collective problem-solving, focusing primarily on
structures that exhibit characteristics consistent with those
observed in real networks of social relationships. We used
the Particle Swarm Optimization as a model, comparing re-
sults achieved by swarms based on classical, complex and
state-of-the-art PSO topologies, subject to different rules
for interaction between individuals in a swarm. In a pre-
vious study [8], we found evidence of how beneficial the
application of scale-free networks to particle swarms can
be. However, although capable of providing some impor-
tant features present in many real-world structures, scale-
free networks lack other relevant characteristics, such as a
high node clustering, as well as more realistic formation pro-
cesses. Furthermore, in this previous work, we compared the
performance of a more restricted set of neighborhoods sub-
ject to a small number of experimental arrangements. In
the present study, we delve deeper into the subject, getting
stronger evidence suggesting that realistic social networks
are able to yield good results, indicating that they may be
a product of evolutionary processes and situating them as
potentially beneficial structures to be used to regulate com-
munications between artificial agents in Swarm Intelligence
methods.

2. NETWORKS AND SOCIAL SYSTEMS
Until recently, networks representing relations in complex

systems, like social networks, were considered too complex
and were, thus, modeled as resulting from a totally ran-
dom process. However, with the increasing data availability
and computing power, as well as better analytical tools, it
was possible to formalize many concepts on these systems
and to notice that some characteristics of real-world net-
works were significantly different from those expected for
completely random structures or for regular networks, as lat-
tices or full graphs. These differences became more evident
in 1998 and 1999, when two seminal papers were published
studying average distances between nodes1 and degree dis-
tributions2 in these so called complex networks. In the first
work, Duncan Watts and Steven Strogatz [25] pointed out
that many real-world networks, as power grids and the neu-
ral network of the worm Caenorhabditis elegans, exhibit the
“small-world effect”, a combination of small average distance
and high clustering3 that no existent model for the origin of
complex networks had been able to provide. Analogously, in
the second paper Albert-László Barabási and Réka Albert

1
Formally, the average path length of a network is defined as the

mean number of edges in the smallest path between two nodes, cal-
culated over all pair of nodes.

2
The degree of a node is given by the number of immediate con-

nections this node has. The degree distribution of a network is the
relation between a degree and the proportion of nodes in the network
that have exactly this degree.

3
A clustering coefficient measures how likely are two nodes A and

B to have a direct connection in a network, given that they both are
neighbors of a third node, C.

Figure 1: Network with 25 nodes and 50 edges gen-
erated using the model proposed by Davidsen, Ebel
and Bornholdt.

[1] showed that networks as those formed by citations be-
tween scientific publications, links between web pages, and
electric power grids have nodes with degrees distributed ac-
cording to a power-law4, a property incompatible with any
model so far5.

To address the inadequacy of the existing models, Watts
and Strogatz presented the Small-World network model
that, unlike random networks, is able to generate networks
displaying small-world properties from an initially highly
structured network based only on local connections, as ring
or lattice topologies, with the addition of a few connections
between random nodes. On the other hand, Barabási and
Albert proposed the Scale-Free model, which combines ad-
dition of new nodes and edges to the network with pref-
erential attachment, a mechanism that selects ends for the
added edges with probability proportional to the number of
connections a node already has, in a rich-gets-richer fashion.

Despite generating networks with specific characteristics
observed in the real-world, these models fail to provide struc-
tures combining the small-world effect with a degree distri-
bution following a power-law. One mechanism combining
both these features was presented by Davidsen, Ebel and
Bornholdt [3] and focused on modeling acquaintance net-
works (see Figure 1 for an example of a network generated
using this model). In this model at each step one individ-
ual is randomly selected to introduce two random acquain-
tances of hers, creating a direct connection between them.
If the selected individual has less than two social contacts,
then she introduces herself to other random person. At the
end of this step, with probability p one random person dies
(i.e., is removed from the network) and another one is born
with one connection to a randomly selected acquaintance.
The parameter p defines the shape of the degree distribution
when a stationary state is achieved, varying from a power-
law, when p � 1 (which makes the linking mechanism the

4
A power-law is a distribution in which the probability p(k) that

one specific node has exactly k neighbors is given by p(k) ∝ k−γ ,
where γ is a positive parameter.

5
While node degrees in random networks follow a binomial or

Poisson distribution and nodes in regular networks have all the same
degree, small-world networks go from having all nodes with the same
degree to exhibiting a Poisson degree distribution, as the number of
random connections between nodes is increased.
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dominant ingredient), to a Poisson distribution when p ∼ 1
(which makes the random death-birth process dominant). It
is worth noting that the preferential attachment mechanism
is indirectly present in this model through the linking mech-
anism, as the probability of a person being introduced to a
new social contact is larger if she has more acquaintances.
This model is more consistent with what is seen in natu-
ral systems, once it explains the small-world effect not from
regular networks, as Watts and Strogatz model, but from
a random structure. Also, these acquaintance networks can
provide a power-law degree distribution with no need for any
global information on the network (such as the current de-
gree distribution, necessary to the preferential attachment
step in the original Scale-Free model), making this model
compatible with self-organization principles expected to be
present in social networks.

3. PARTICLE SWARM OPTIMIZATION
The Particle Swarm Optimization [13] is a population-

based metaheuristic for global optimization of continuous
functions. As a Swarm Intelligence method, this technique
uses social cognition as a metaphor, following the idea that,
through culture, local positive innovations are transported
to larger groups and that multiple innovations are combined
in order to obtain better results [11]. Each particle (indi-
vidual) in the swarm has its own set of characteristics (for
instance, psychological traits, beliefs or parts of a solution
to a given problem) which can be represented as a point in
a multidimensional space. The particle can, then, evaluate
the quality of its current set and then compare it to the
quality of its previous configurations and, also, compare its
own success to the success achieved by a defined subset of its
peers (also called “neighbors”). This neighborhood can be
static throughout the search process or be dynamically up-
dated using some criterion. After the comparison step, each
particle can update its characteristics set in order to achieve
a higher quality solution, for which it may imitate its suc-
cessful neighbors and use its own previous experiences. The
pseudocode for the standard PSO is presented in Algorithm
1. The particle i moves through the space with a velocity
vi, which is calculated by combining the inertial speed (ωvi)
and the particle’s cognitive and social influences. These in-
fluences are usually implemented as two attractors (pi and
pgi) whose intensities are weighted in each dimension by a
random variable that assumes values between 0 and c1 or
c2, the individual and social coefficients, respectively.

As observed in human groups, an adequate communica-
tion structure, combined with a good parameter setting,
can greatly improve results achieved by a particle swarm.
While too sparse topologies can make the particles to waste
much computational effort on low quality regions, a highly
connected swarm can propagate information too fast, mak-
ing the system to collapse quickly to a suboptimal solution,
trapping it in a local optima [5]. Therefore, many topolo-
gies have been proposed when implementing PSO, starting
with the canonical global and local neighborhoods (see Fig-
ure 2). The global neighborhood consists of a fully con-
nected swarm, in which every particle receives information
from all its peers, while the local neighborhood is based on a
ring-like structure, where each particle communicates with
its nearest neighbors to the left and to the right. Beyond
the canonical structures, the von Neumann neighborhood is
also widely used and is known for usually promoting a nice

input: ω, c1, c2, N and neighborhood
Initialize position xi, velocity vi and personal best
position pi for each of the N particles;
while stop criterion is not satisfied do

for i← 1 to N do
gi ← arg minj∈neighbors(i) f(pj);
vi ← ωvi + c1r1(pi − xi) + c2r2(pgi − xi);
xi ← xi + vi;
if xi is within search range and f(xi) < f(pi)
then

pi ← xi;
end

end

end

Algorithm 1: Particle Swarm Optimization for mini-
mization

(a) Global neighborhood. (b) Ring neighborhood.

Figure 2: Canonical topologies for PSO with 10 par-
ticles.

balance between exploration and exploitation. In von Neu-
mann topologies the particles are organized in a grid and
can communicate only with those peers adjacent to them
in the structure. Whereas these three neighborhoods are
static, there are also well known dynamic neighborhoods, as
that of DMS-PSO [15], which organize the particles in small
temporary subswarms with equal sizes that are totally rear-
ranged at regular intervals (see Figure 3). A particle, then,
can exchange information only with other particles in the
same subswarm. When the search process is near its final
iterations the topology is replaced by a global neighborhood,
focusing mainly on refining the best solution found so far in-
stead of looking for new solutions. DMS-PSO can delay the
collapse of the swarm, giving it enough time to explore the
search space, and can nowadays be considered a topology in
the state-of-the-art.

4. EXPERIMENTS

4.1 Method
The main hypothesis to be tested in this study was

whether complex networks yield better results while medi-
ating collective problem-solving in groups of natural or ar-
tificial agents. To test this, we adopted the Particle Swarm
Optimization as model of social groups, as explained in pre-
vious sections. Despite its simplification, it is considered a
sound model of interaction within human groups [16]. We
compared the effectiveness of such swarms in solving a series
of optimization problems while using global, local and von
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(a) Subswarms before the
rearragement.

(b) Subswarms after rear-
ragement.

Figure 3: Example of topology in DMS-PSO with 9
particles and subswarms of size 3.

Neumann static neighborhoods – classical topologies used
not only in metaheuristics but widely adopted to shape com-
munication between processes in computational systems –,
the neighborhood of Dynamic Multi-Swarm Particle Swarm
Optimizer (DMS-PSO), and two complex topologies (one
static and the other dynamic) that will be presented in sub-
section 4.2. The main set of problems to be solved in this
work is the test suite for the IEEE Congress on Evolutionary
Computation (CEC) 2005 Special Session on real-parameter
optimization [23], which comprises 25 functions with real pa-
rameters, with 10, 30 and 50 dimensions, ranging from sim-
ple functions with a single local optima (unimodal function)
to highly complex ones – sometimes noisy, non-separable,
non-continuous or non-differentiable – with a huge number
of local optima (multimodal). As we intended to check the
presence of trends toward improvement or deterioration in
the performance of any tested topology in higher dimen-
sional problems, we also used the test suite developed for the
IEEE CEC 2008 Special Session on large scale global opti-
mization [24] for 100-dimensional problems, which is formed
by 7 functions, including unimodal and multimodal ones.
Possible drawbacks of using these benchmarks as proxies
for real-world problems are their focus only on optimiza-
tion tasks and the fact that they are artificial, what could
make them improper representations for relevant problems
in this investigation. However, as well as locating food may
be formulated as minimizing distance to food sources, many
other real-world tasks can be reduced to optimization prob-
lems. Also, the selected benchmarks were developed aiming
to display specific characteristics present in real problems,
so that we considered these test suites as an adequate form
of emulating multiple real challenges at a reasonable effort,
allowing us to test a wide range of tasks with different com-
plexities much more effectively than it would be possible
with real problems.

To extend our comparisons beyond the classical individ-
ual dynamic of PSO, in which each particle uses only one
influence (its best social contact) at a time and there is
only attraction (positive feedback) and no repulsion (neg-
ative feedback) between individuals, we also tested three
other dynamics present on PSO literature: the Fully In-
formed Particle Swarm (FIPS) [19], the Bare Bones PSO
[12] and the Attractive and Repulsive PSO (ARPSO) [22].
These dynamics are described bellow:

• The FIPS implements a “fully informed” particle, i.e.
a particle that uses as attractor not only information

from its best neighbor but a combination of personal
attractors of all its neighbors. The speed update equa-
tion from the classical PSO is, thus, changed to the
following rule:

vi ← ωvi + φ(

∑
k∈N W(k)φkpgk∑

k∈N W(k)φk
− xi)

in which φk is a random variable that assumes values
in [0, φmax] (φmax is a parameter defined by the user),
and the function W(k) defines the strength of each
attractor, using for this any information considered to
be relevant (e.g.: the best fitness achieved by particle
k).

• ARPSO introduces a simple negative feedback mech-
anism in PSO aiming to increase diversity when the
particles in a swarm are too close to each other. If this
diversity is below a predefined threshold (dlow), then
the particles are no longer attracted to their social in-
fluences and become repelled by them. This repulsion
lasts until the diversity reaches a value dhigh.

• Bare Bones Particle Swarm, on the other hand,
changes the way a particle combines its influences to
define the next point to visit by selecting it according
to a Gaussian probability density function with center
and variance calculated using the particle’s personal
and social influences. The position update rule is, thus,
changed to:

xi ← N(
pi + pgi

2
, |pi − pgi |)

where N(µ, σ) returns a random value sampled from a
normal distribution with center µ and standard devi-
ation σ.

The effectiveness of using complex networks was com-
pared to that of using each of the other topologies, checking
whether it was possible to achieve results significantly better
(or significantly worse) while using them to shape commu-
nication between agents. For each pair of topologies to be
compared we follow the steps bellow:

1. Given one experimental condition – i.e. one test func-
tion, its dimensionality and the individual dynamic to
be used:

(a) We used the PSO (with the defined individual
dynamic) to search for the best solution of the
specified test function, applying as neighborhood
each topology to be compared;

(b) We compared the best values obtained when using
each topology: if the value obtained by the first
was better, then we increased by one the number
of wins of the first topology, however, if this value
was worse, we incremented the number of wins of
the second topology.

2. The previous steps were performed 30 times for all the
328 experimental conditions.
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3. We, then, calculated the difference between the ratio
of the total number of runs (for all experimental con-
ditions) the first network performed better and the ra-
tio the second one obtained better results, checking
whether this difference was statistically significant.

As the computational cost of repeating all optimizations
specifically for each comparison was very high, we decided
to perform the optimizations for each topology and experi-
mental condition 30 times and store the results in a memory.
When comparing a pair of topologies, instead of running all
optimizations again, we approximated it by drawing sam-
ples (without replacement) from the memory respective to
the topology and the experimental condition, making it pos-
sible to reduce the required running time by two thirds. To
make these results more robust, we calculated the studen-
tized confidence intervals for each mean difference between
success ratios using a stratified bootstrapping with 1000 rep-
etitions and defining each experimental condition as a dif-
ferent stratum.

The parameters relative to PSO and its individual dy-
namics were set following recommendations from literature
whenever such recommendations were available. This was
the case for the standard PSO parameters, c1, c2 and ω
– which were set, respectively, to 1.496, 1.496 and to vary
linearly from 0.9, in the first iteration, to 0.4, at the end
of the search –, and for the dynamics and topologies spe-
cific parameters, as DMS-PSO subswarm size (m = 3)
and period between regroupings (R = 5), ARPSO upper
(dhigh = 0.25) and lower bounds (dlow = 5 ∗ 10−6) for
swarm diversity and FIPS weight function (W(x) = 1, ∀x).
Other parameters, as swarm sizes and specifications for the
complex topologies, were defined through a preliminary test
for each pair of topology and individual dynamic, select-
ing those parameters that yielded the best results on a
simple set of 7 functions, all with 30 dimensions, as used
in [7]. As stop criterion it was used the limit of fitness
evaluations, as specified for CEC2005 and CEC2008 bench-
marks [23, 24]. Full experimental data, as well as the source
code for simulations and statistical analysis, are available at
http://www.dca.fee.unicamp.br/~godoy.

4.2 The CNPSO+ algorithm
As basis to test the performance of complex neighbor-

hoods on problem-solving we selected the model proposed
by Davidsen, Ebel and Bornholdt (introduced on section 2),
since this model was developed after social networks and is
capable of generating networks with both small-world effect
and scale-free degree distribution, two of the main features
of complex networks.

Real-world social networks are highly dynamical struc-
tures, being common for people to change all their social
connections throughout their lives. Thus, it is important
to check whether the dynamicity of connections is an im-
portant factor in the ability to solve problems in social
groups. Particularly, this sort of study can be specially
interesting for PSO as, with this knowledge, it may be
possible to design mechanisms that enhance swarm intel-
ligence techniques, better equipping them to deal with mul-
timodal problems, a class of problems on which PSO has
poor performance. Aiming to explore this possibility, we
developed the Complex Neighborhood Particle Swarm Op-
timizer 2 (CNPSO+), a PSO applying a complex network
as initial neighborhood and implementing a simple topolog-

ical adaptation mechanism, loosely based on Davidsen, Ebel
and Bornholdt model. Periodically, each particle checks if it
has improved its personal best since the last adaptation. If
the particle is stagnant then it creates a direct connection
to one of its second degree neighbors chosen at random (or
to a random individual if the particle has no second degree
neighbor), otherwise the particle disconnects itself from its
neighbor with the worst personal history. The main idea be-
hind this procedure is that if a particle has recently improved
its results it may be in a promising region and therefore must
concentrate its efforts on local search. If the particle is stag-
nant, however, it may be necessary to locate a new promising
region, for which the particle could use information obtained
from a new neighbor. Furthermore, this procedure was de-
signed with the intention of maintaining a strong element
of self-organization, so that the decision is made by each
particle based on local information and not by a centralized
controller, keeping consistency with what is observed in real
social networks and helping to minimize computational costs
of the algorithm in distributed environments.

When using the acquaintances network model three pa-
rameters need to be set: the swarm size, the average node
degree and the probability p of a node to die. Besides
them, in CNPSO+ a new parameter is necessary, the num-
ber of topological adaptations throughout the search. We
set p = 0.01 to kept the degree distribution in the scale-free
region, whereas the other parameters were defined follow-
ing the same preliminary tests explained at the end of the
previous subsection.

4.3 Results and discussion
The comparisons between results achieved when using

complex topologies and those obtained when using classi-
cal static neighborhoods are reported on Table 1. For a
better analysis, we show also comparisons for partial re-
sults, grouped according to benchmark dimension, function
multimodality and individual dynamics used in PSO. Ac-
cording to the obtained data, static complex topologies pro-
vide better overall results than all other static topologies.
The dynamic complex neighborhood used in these exper-
iments, despite exhibiting better general performance than
global and local neighborhoods, produced worse results than
von Neumann topology. Looking into the partial data it
is noticeable that, while both complex topologies have sig-
nificantly better results when using the regular individual
rule from PSO (only with positive feedback) and the rule
from ARPSO (which displays both positive and negative
feedback), their performance when combined with fully in-
formed particle swarms (FIPS) is weak when compared to
von Neumann and local topologies. In fact, after analyzing
the experimental data in detail it was possible to trace the
bad results of dynamic complex topology against von Neu-
mann topology only to its inefficiency when combined with
FIPS since, for all dimensionalities, complex topologies have
consistently much lower performance when applied to a fully
informed swarm whereas they display the best results when
applied to regular PSO and ARPSO individual rules and
mixed results when combined with Bare Bones PSO (how-
ever, as the reader can see in Table 1, the overall results
of complex topologies when applied to the Bare Bones PSO
rule are better than those of von Neumann with this same
rule).

The poor performance of complex topologies when com-
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Table 1: Comparison between complex and classical communication topologies. The table shows the difference
(95% confidence interval) between the proportion of tests in which swarms using complex neighborhoods
yielded better results and the proportion in which the classical topologies were better than their complex
counterparts. Conditions in which complex neighborhoods were better are marked in bold.

Dimensions
Complex network Compared with 10 30 50 100

Static
Global [25.7%, 25.9%] [22.0%, 22.2%] [32.3%, 32.4%] [47.6%, 47.9%]
Von Neumann [2.8%, 3.0%] [8.1%, 8.3%] [6.7%, 6.9%] [−9.4%,−9.0%]
Local [9.9%, 10.1%] [24.2%, 24.4%] [32.9%, 33.0%] [17.1%, 17.5%]

Dynamic
Global [14.1%, 14.3%] [7.3%, 7.4%] [24.6%, 24.8%] [44.5%, 45.0%]
Von Neumann [−6.1%,−5.9%] [−5.9%,−5.7%] [5.4%, 5.5%] [−4.4%,−4.1%]
Local [−1.7%,−1.6%] [15.2%, 15.4%] [26.8%, 26.9%] [18.2%, 18.5%]

Individual dynamic
Complex network Versus Regular FIPS Bare Bones PSO ARPSO

Static
Global [39.6%, 39.8%] [39.7%, 39.8%] [−5.3%,−5.1%] [39.8%, 40.0%]
Von Neumann [10.9%, 11.1%] [−17.4%,−17.3%] [4.1%, 4.3%] [17.0%, 17.2%]
Local [37.6%, 37.8%] [−19.9%,−19.8%] [22.0%, 22.2%] [47.6%, 47.8%]

Dynamic
Global [44.1%, 44.3%] [7.2%, 7.3%] [0.9%, 1.1%] [18.3%, 18.5%]
Von Neumann [22.1%, 22.3%] [−41.1%,−40.9%] [8.3%, 8.5%] [3.5%, 3.7%]
Local [38.1%, 38.3%] [−42.1%,−42.0%] [23.1%, 23.3%] [38.2%, 38.3%]

Function type
Complex network Compared with Unimodal Multimodal Complete

Static
Global [18.2%, 18.4%] [30.5%, 30.6%] [28.3%, 28.3%]
Von Neumann [12.1%, 12.3%] [3.1%, 3.2%] [4.7%, 4.9%]
Local [21.5%, 21.6%] [22.2%, 22.3%] [21.8%, 21.9%]

Dynamic
Global [−3.5%,−3.4%] [23.1%, 23.2%] [17.4%, 17.5%]
Von Neumann [−2.5%,−2.3%] [−3.0%,−2.8%] [−2.7%,−2.6%]
Local [11.9%, 12.1%] [14.9%, 15.0%] [13.7%, 13.8%]

bined with FIPS is likely to be result of the chosen weight
function W, which assigns equal attractiveness to all influ-
ences a particle has. As a fully informed particle does not
select only its best neighbor as its social influence but de-
fines this influence by averaging the best position visited by
each of its neighbors, the point of the search space towards
which the particle will be attracted will not necessarily be
located in one of the most promising regions found by the
particles’ neighbors so far. Imagine that one particle has
some of its neighbors personal best located in one basin of
attraction and the rest of them located in a second basin
of attraction: the resulting attraction force may be directed
to a point outside both basins (or located in their periph-
eries), aggregating the information previously gathered by
the swarm in an ineffective fashion and seriously compro-
mising the swarm’s ability to perform local search. This dis-
orientation will be stronger the more connections a particle
has, an effect particularly harmful to networks with higher
average degree or with degree distribution following a power-
law, as in the later their connectivity is highly dependent on
the hubs. In a scale-free network the role of hubs is to inter-
mediate communication between distant nodes, therefore an
efficient hub should aggregate signals from multiple sources
and spread potentially beneficial information. If a highly
connected particle in PSO is unable to improve its current
solution using the knowledge gathered from its peers, its per-
sonal best will be stuck in the same position for a long time
during which this hub will not send any new information to
its less connected neighbors, inducing the deterioration of
the informational flow throughout the network. The reader
can notice that, unlike what happens in the standard PSO,

in FIPS a stagnant particle is usually not associated with
the achievement of a local optimum, which could be solved
by providing the particle information about new promising
regions. Therefore, it is clear that the topological update
mechanism proposed in this work for the dynamic complex
network would result in bad performance in a fully informed
swarm: stagnant particles would seek more information by
connecting to new peers, dislocating even more its social at-
tractor from any promising region such neighbors may have
found and worsening the problem.

The combination of complex networks and fully informed
particle swarms, however, is not doomed to poor results. A
carefully designed combination of weight function and topol-
ogy creation and update mechanism can greatly improve the
performance of this kind of swarm, as is seen in the Scale-free
Fully Informed PSO (SFIPSO) [27]. The SFIPSO defines a
weighting function W that makes particles more attracted
by influences with better fitnesses and generates the social
network between the particles using a method that stimu-
lates the creation of links between particles that are closer in
the search space and gives particles with better performance
higher probability of receiving new connections, being, thus,
more prone to became hubs in this network. According
to the experiments performed by the authors of SFIPSO,
this algorithm was capable of achieving good performance
in each tested function. This result is a strong indicator
that the design of new individual rule for processing social
information in swarm intelligence techniques may be more
efficient if made in line with the selection of the topology
that will shape the communication in this system.

When analyzing the relationship between the dimension-
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ality of the tested functions and the results for a given
topology, it was not possible to detect any clear trend of
improvement or degradation of the relative performance of
swarms using complex topologies as the size of the search
space increased. For the selected parameters, in none of the
comparisons the difference of performance was monotoni-
cally increasing or decreasing as we added more dimensions
to the problem. If we focus on the function multimodality,
in problems with only one local optimum global topology
exhibits much better performance than in problems with a
large number of optima, as expected. Another interesting
relation between neighborhoods and function multimodality
is observed in the comparison between static complex and
von Neumann communication topologies, as the advantage
of using the complex one is much reduced in problems with
higher number of peaks.

It is also noticeable that, despite having similar behav-
iors, static and dynamic complex topologies display qualita-
tively different results. To analyze the differences between
these two approaches, we compared the results achieved by
each of these topologies under the same experimental condi-
tions. The results of these comparisons is exhibited in Table
2. The difference of performance between static and dy-
namic complex networks is similar for all tested number of
dimensions, providing no evidence that one topology ben-
efits more than the other from the increase in the search
space. On the other hand, for different types of function, it
was possible to notice that the advantage of static complex
networks was reduced for multimodal problems. The most
marked difference, however, was observed when comparing
the results of static and dynamic topologies when combined
with different individual behaviors. Swarms using dynamic
complex topologies were able to locate better solutions com-
bined with individual behavior implementing only positive
feedback and using only the best social contact as attractor,
whereas they performed poorly in comparison with swarms
using static topologies if their particles’ behavior presented
also negative feedback or defined their social attractor by av-
eraging all the information obtained from their peers. These
results reinforce the earlier highlighted existence of benefits
in the joint design of individual behavior and communica-
tion structure between agents (and the method by which
this structure is updated) in swarm intelligence techniques,
also suggesting that the actual mechanism used by social an-
imals to create (and maintain) contacts may have coevolved
with the way these animals aggregate information gathered
from their social contacts. This being the case, the behavior
of social animals is likely to be an efficient method to solve
the problems these animals face, as seeking for food or shel-
ter, and may be a valuable inspiration for Engineering. It is
worth to notice, however, that both the coevolution of so-
cial behaviors hypothesis and the effectiveness of the current
animal behavior ask for more evidence.

To evaluate the potential of applying the complex topolo-
gies discussed in this work to solve Engineering problems,
we also compared the static and dynamic complex neighbor-
hoods to a state-of-the-art topology in PSO, the DMS-PSO
(presented in section 3), under the classical individual be-
havior, for which DMS-PSO was developed. The results are
exhibited in Table 3. It is noticeable the difference of rel-
ative performance between the complex neighborhoods, as
the static topology lost much of its competitiveness against
DMS-PSO when the size of the search space was increased,

what is not observed for the dynamic topology. The dynamic
complex neighborhood, in turn, got mixed results in harder
problems, achieving better results in the largest search space
tested (100 dimensions) and performing slightly worse than
DMS-PSO in rugged surfaces. The overall results show little
difference between the dynamic complex topology presented
in this work and DMS-PSO, with a narrow advantage to the
latter. By the strict point of view of Engineering, this com-
plex topology still needs improvement so it can overcome the
results achieved by the DMS-PSO. Despite this, it is remark-
able that swarms using a topology made mainly to mimic
real societies, which was only adapted for performance im-
provement through minor parametric adjustments, were able
to achieve results so close to those obtained by swarms us-
ing a state-of-the-art topology. We wonder whether a mech-
anism for topological update more similar to those seen in
Nature would be able to provide even better results.

5. CONCLUSION AND FUTURE WORKS
In this work we studied complex networks and what is

the effect of their use for structuring communication between
natural or artificial agents in collective problem-solving. The
experimental results brought evidence that the topological
characteristics present in real-world social networks may, in
fact, provide gain of performance and show that the mech-
anism used by individuals to create or delete social connec-
tions may strongly influence the results obtained by a group.
This corroborates with the idea that the current topology of
human social networks (and its update mechanism) was pos-
itively selected by natural evolution due to the improvement
of performance in groups applying these structures of com-
munication. Moreover, the obtained data indicates that the
performance of a group of agents using a complex network
to define its neighborhood also is highly dependent on how
individuals act on the information they got from their peers,
suggesting the method social animals establish and manage
social ties coevolved with the way these individuals process
social information. Furthermore, the obtained results have
important implication for the design of multi-agent and dis-
tributed systems, as it renders natural societies as a poten-
tially good source of inspiration for such systems based on
decentralized agents.

One clear direction for further research is to investigate
the effect more realistic individual behaviors have on the col-
lective performance of social groups as well as the interaction
between these behaviors and different topologies, specially
dynamic ones inspired by the way social networks evolve.
Of course, as a technique for solving Engineering problems,
the combination of PSO and complex networks still needs
some fine-tuning, as the design of an individual rule explor-
ing the characteristics of these networks and of a topological
update mechanism that improves the algorithm’s ability to
tackle multimodal problems. The main goal of this work,
however, was not to develop the best optimization method
but to explore the relationship between collective behavior
and the communication structure within a group, shedding
some light on the subject and supposedly inciting other re-
searchers to investigate it.
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