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ABSTRACT

Given n variables to model, symbolic regression (SR) re-
turns a flat list of n equations. As the number of state vari-
ables to be modeled scales, it becomes increasingly difficult
to interpret such a list. Here we present a symbolic regres-
sion method that detects and captures hidden hierarchy in a
given system. The method returns the equations in a hierar-
chical dependency graph, which increases the interpretabil-
ity of the results. We demonstrate two variations of this
hierarchical modeling approach, and show that both consis-
tently outperform non-hierarchical symbolic regression on a
number of synthetic data sets.
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1. SYMBOLIC REGRESSION APPROACH

TO MODEL HIERARCHY
Hierarchy is thought to be a fundamental characteristic

of many complex systems such as biological organisms [4],
ecological systems [2], the internet, traffic networks [3] and,
arguably, social organizations [1]. In this paper, we propose
symbolic regression based approaches to model hierarchical
relationships in multivariate data. A simple approach is to
model each variable separately in terms of all other variables
using SR (the naive symbolic regression approach, figure 1).
The best models are identified based on the error on valida-
tion data, then, the variables that appear in these models
are identified as the predictors for each respective modeled
variable. An adjacency matrix is then built based on these
identified predicted variable-predictor mappings. Finally,
the algorithm returns the adjacency matrix representing the
connectivity between the variables along with the set of best
models evolved for each non-stimulus variable. By modeling
each variable independently, this algorithm does not impose
any constraints on the connectivity.
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Figure 1: The naive symbolic regression (NSR) algo-

rithm. Leaves: stimuli (independent variables) and in-

ternal nodes: state variables (dependent variables)

We also devised an algorithm that enforces hierarchical
extraction of the dependencies in an iterative manner. At
each iteration, dependencies for one non-stimulus variable
are discovered using SR. The algorithm starts with only the
stimuli as the set of available independent variables. After
first iteration, the variable (vi) that is best explained by a
subset of these inputs is determined. Then, all predictors for
variable (vi) are removed from the set of available indepen-
dent variables in accordance with our constraint that inputs
can not overlap. Next, vi is added to the list of independent
variables. The algorithm stops after each (non-stimulus)
variable has been modeled using SR. Figure 2 shows two
variants of this hierarchical approach in which the selection
of the best modeled variable and the corresponding predic-
tors are performed in two different ways.

Figure 2: (left panel) The HSR version 1 (h1). Best

model is chosen on the combined Pareto set, from which

the predictors are extracted. (right panel) The HSR

version 2 (h2). The state variable with the best error-

complexity trade-off is selected, the most frequent pre-

dictors are extracted. An extra SR step with the chosen

predictors generates the model for that state variable
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2. EXPERIMENTAL RESULTS
All three algorithms were compared on a synthetic bench-

mark data suite, where a number of hidden target hierar-
chical systems with varying arities and tree heights were
randomly generated. Each expression contained only {+,-,*
and protected / } operators without any constant values.
The degree of nonlinearity was kept constant by enforcing
that only binary nonlinear interactions are allowed in the
target expressions. For instance, the hidden expression for
a state variable can be v1 = s1 + s2 − s4 ∗ s5 − s3, but not
v1 = s1 ∗ s2/s4 ∗ s5 − s3. All datasets were divided into
training, validation and testing partitions.

Figure 3 shows the results for a number of arity/tree
height configurations where 30 hidden target systems were
randomly generated per configuration. Each algorithm was
given a 10-minute run-time budget per dataset. For the per-
centage of correct edges, each pair of algorithms were com-
pared using the left-tailed Wilcoxon rank sum test with Bon-
ferroni correction and unequal variances assumption. The
cases where the h1 and h2 algorithms are significantly bet-
ter than the naive algorithm, and when the h2 algorithm
is significantly better than the h1 algorithm, are presented
using ∗ sign (∗ ∗ ∗:α = 0.001, ∗∗:α = 0.01, ∗:α = 0.05). For
the test set error results, we performed right-tailed Wilcoxon
rank sum tests, since lower test error indicates better per-
formance. The heatmaps show error versus number of cor-
rectly identified edges where it is evident that the naive algo-
rithm mostly finds low-error models at the expense of miss-
ing many edges. The problem becomes increasingly difficult
for all three approaches as the arity increases and the hierar-
chical approach no longer outperforms the naive for arity=5.

3. CONCLUSION
Extracting and visualizing the relationships in a hierarchi-

cal system as a dependency graph improves the intelligibility
of the overall model, compared to the flat list of equations
produced by traditional symbolic regression. Our results
clearly show that in order to find hierarchy, one needs to
explicitly search for it rather than waiting for the hierarchi-
cal models to emerge in an unconstrained search such as in
the naive SR. On the other hand, it is possible to devise
many ways for explicitly searching for hierarchy in the data.
In this paper, two such approaches were explored. The fo-
cus of our current work is to further explore more efficient
ways for the selection process at each stage and to extend
the algorithm to model more general systems that exhibit
mixtures of hierarchy and network connectivity.
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Figure 3: For binary systems (arity=2), both hierarchi-

cal approaches outperform the naive approach even when

the tree height increases. The hierarchical approach out-

performs the naive approach until arity=5
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