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ABSTRACT
In this paper we discuss the effects of using pre-clustered
data on the identification of estimation models for cancer di-
agnoses. Based on patients’ data records including standard
blood parameters, tumor markers, and information about
the diagnosis of tumors, the goal is to identify mathematical
models for estimating cancer diagnoses. We have applied a
hybrid clustering and classification approach that first iden-
tifies data clusters (using standard patient data and tumor
markers) and then learns prediction models on the basis of
these data clusters.
In the empirical section we analyze the clusters of patient
data samples formed using k-means clustering: The optimal
number of clusters is identified, and we investigate the ho-
mogeneity of these clusters. Several evolutionary modeling
approaches implemented in HeuristicLab have been applied
for subsequently identifying estimators for selected cancer
diagnoses: Linear regression, k-nearest neighbor learning,
artificial neural networks, and support vector machines (all
optimized using evolutionary algorithms) as well as genetic
programming. As we show in the results section, the investi-
gated diagnoses of breast cancer, melanoma, and respiratory
system cancer can be estimated correctly in up to 84.2%,
80.3%, and 94.1% of the analyzed test cases, respectively;
without tumor markers up to 78.2%, 78%, and 93.3% of the
test samples are correctly estimated, respectively.
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1. INTRODUCTION AND OVERVIEW
In this paper we present research results achieved within

the research center Heureka!1: Data of thousands of patients
of the General Hospital (AKH) Linz, Austria, have been an-
alyzed in order to identify mathematical models for cancer
diagnoses. We have used a medical database compiled at the
central laboratory of AKH: 28 routinely measured blood val-
ues of patients are available as well as several tumor mark-
ers (substances found in humans that can be used as in-
dicators for certain types of cancer). This paper describes
research that is a continuation of the results presented at
further GECCO Workshops on Medical Applications of Ge-
netic and Evolutionary Computation: In [25] we reported
on the data based identification of mathematical models for
tumor markers (i.e., virtual tumor markers), and in [26] we
discussed the use of several evolutionary machine learning
techniques for identifying predictors for cancer diagnoses.

In this paper we discuss the use of an approach presented
in [28], namely the integrated use of automated clustering
and classification algorithms for identifying even more accu-
rate classifiers for cancer diagnoses.

In the following section (Section 2) we describe the
database we have used for our research work and also the
tumors for which we have developed classifiers; we also de-
scribe the data preprocessing steps. For each tumor for
which we have developed classifiers we define the sets of
input variables used in this research project.

1Josef Ressel Center for Heuristic Optimization;
http://heureka.heuristiclab.com/
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In Section 3 we describe our integrated clustering and clas-
sification approach. In Section 3.2 we describe the here ap-
plied clustering approach and define functions to estimate
the homogeneity of the so formed clusters; in Section 3.3
we discuss the classification methods used in this research
project as well as the parameter settings applied.

In Section 4 we summarize and analyze the modeling re-
sults we have achieved; the conclusion of this paper is given
in Section 5.

2. DATABASE

2.1 Available Patient Data
The blood data measured at the AKH in the years 2005–

2008 have been compiled in a database storing each set of
measurements (belonging to one patient): Each sample in
this database contains an unique ID number of the respective
patient, the date of the measurement series, the ID number
of the measurement, and a set of parameters summarized
in Table 1; standard blood parameters are stored as well as
tumor marker values and cancer diagnosis information. Pa-
tients personal data were at no time available to the authors
except the head of the laboratory.

In total, information about 20,819 patients is stored in
48,580 samples. Please note that of course not all values
are available in all samples; there are many missing values
simply because not all blood values are measured during
each examination. Further details about the data set and
the applied preprocessing methods can be found in [25] and
[26].

2.1.1 Standard Parameters
Information about the standard parameters (general pa-

tient information and standard blood values) stored in the
AKH database (which are listed in the upper part of Table
1) can be found in [13], [23], and [25], e.g.

2.1.2 Tumor Markers
In general, tumor markers (TMs) are substances found in

humans (especially in the blood or in body tissues) that can
be used as indicators for certain types of cancer. There are
several different tumor markers which are used in oncology
to help to detect the presence of cancer. As a matter of fact,
elevated tumor marker values themselves are not diagnostic,
but rather suggestive; tumor markers can be used to monitor
the result of a treatment (as for example chemotherapy).

Literature discussing tumor markers, their identification,
their use, and the application of data mining methods for
describing the relationship between markers and the diagno-
sis of certain cancer types can be found for example in [10]
(where an overview of clinical laboratory tests is given and
different kinds of such test application scenarios as well as
the reason of their production are described), [19], [29], [5],
and [30].

Information about the tumor markers stored in the AKH
database are listed in the lower part of Table 1.

2.1.3 Cancer Diagnoses
Finally, information about cancer diagnoses is also avail-

able in the AKH database: If a patient is diagnosed with
any kind of cancer, then this is also stored in the database.

Our goal in the research work described in this paper is to

Table 1: List of patient data variables collected at
AKH Linz: Blood parameters, general patient in-
formation, and tumor markers
Standard patient information and blood values
ALT, AST, BSG1, BUN, CBAA, CEOA, CH37, CHOL,
CLYA, CMOA, CNEA, CRP, FE, FER, GT37, HB,
HDL, HKT, HS, KREA, LD37, MCV, PLT, RBC,
TBIL, TF, WBC, AGE, SEX

Tumor markers
AFP, CA 125, CA 15-3, CA 19-9, CEA, CYFRA,
fPSA, NSE, PSA, S-100, SCC, TPS

identify estimation models for the presence of the following
types of cancer:

• Malignant neoplasms in the respiratory system (RSC,
cancer classes C30–C39 according to the Interna-
tional Statistical Classification of Diseases and Related
Health Problems 10th Revision (ICD-10)),

• melanoma and malignant neoplasms on the skin (Mel,
C43–C44), and

• breast cancer (BC, C50).

2.2 Data Preprocessing
Before analyzing the data and using them for training

classifiers we have preprocessed the available data:

• All variables have been linearly scaled to the interval
[0;1]: For each variable vi, the minimum value mini is
subtracted from all contained values and the result is
divided by the difference between mini and the maxi-
mum plausible value maxplaui; all values greater than
maxplaui are replaced by 1.0.

• All samples belonging to the same patient with not
more than one day difference with respect to the mea-
surement data have been merged.

• Additionally, all measurements have been sample-wise
re-arranged and clustered according to the patients’
IDs. This has been done in order to prevent data of
certain patients being included in the training as well
as in the test data.

Before starting the modeling algorithms for training clas-
sifiers we had to compile separate data sets for each analyzed
target tumor ti: First, blood parameter measurements were
joined with diagnosis results; only measurements and diag-
noses with a time interval less than a month were consid-
ered. Second, all samples containing measured values for ti
are extracted. Third, all samples are removed that contain
less than 15 valid values. Finally, variables with less than
10% valid values are removed from the data base.
This procedure results in a specialized data set dsti for each
tumor marker ti. In Table 2 we summarize statistical infor-
mation about all resulting data sets for the markers analyzed
here; the numbers of samples belonging to each of the de-
fined classes are also given for each resulting data set.

1464



Table 2: Overview of the data sets compiled for selected cancer types
Cancer Input Variables Total Samples in Missing
Type Samples Class 0 Class 1 Values

Breast 706 324 382 46.67%
Cancer AGE, SEX, AFP, ALT, AST, BSG1, BUN, C125, C153, C199, C724, (45.89%) (54.11%)

Melanoma CBAA, CEA, CEOA, CH37, CHOL, CLYA, CMOA, CNEA, CRP, CYFS, 905 485 420 47.79%
FE, FER, FPSA, GT37, HB, HDL, HKT, HS, KREA, LD37, MCV, (53.59%) (46.41%)

Respiratory NSE, PLT, PSA, PSAQ, RBC, S100, SCC, TBIL, TF, TPS, WBC 2,363 1,367 996 44.76%
System Cancer (57.85%) (42.15%)

3. METHODS

3.1 An Integrated Clustering and Classifica
tion Approach for the Analysis of Medical
Data

The here applied analysis approach integrates clustering
and classification algorithms:

First, the available patient data are clustered; this clus-
tering is done on the one hand only for standard blood data
and on the other hand for standard data plus tumor mark-
ers. The so identified clusters of samples are analyzed and
compared with each other; we especially analyze the size of
the clusters and to which extent samples which are assigned
the same clusters regarding standard data are also assigned
to the same clusters on the basis of standard and tumor
marker data.

In this research project we apply k-means clustering [18],
[16]. As simpler models are to be preferred over more com-
plex ones, the quality of clusterings is calculated considering
not only their quantization error, but also the number of
clusters formed; the Davies-Bouldin index [7] is used in this
context.

The so clustered data are subsequently (in combination
with tumor diagnosis data) used for learning tumor diagnosis
predictors; each cluster is used individually for training these
models.

The so identified models are analyzed and compared to
each other with respect to their structure and their relevant
variables.

Figure 1 graphically summarizes this integrated clustering
and classification approach.

3.2 Clustering
For clustering the available data we have used the k-means

algorithm [18], [16] with varying numbers of clusters k: The
cluster centers are initially set at random and then iter-
atively adapted until the quantization error is minimized;
each sample is assigned to the cluster whose center has the
minimum distance to the sample (distance is here calcu-
lated using the Euclidean distance function). As on the one
hand the optimal number clusters is unknown and different
values for k have to be tried, and on the other hand sim-
pler models are to be preferred over more complex ones, the
quality of clusterings is calculated considering not only their
quantization error, but also the number of clusters formed;
the Davies-Bouldin index [7] is used in this context. Infor-
mation about the samples’ classification (as diseased or not
diseased) is of course not available for the clustering algo-
rithm.

Standard blood 
parameter data

Tumor marker 
data

Tumor 
diagnoses

Clustering Clustering

Clusters Clusters

Identification of 
Classifiers

Identification of 
Classifiers

Comparison 

Models Models 

Test,
Comparison 

Figure 1: An integrated clustering and classification
approach for the analysis of medical data: Data clus-
ters are formed using standard data and optionally
also tumor marker data; these clusters are the basis
for the identification of classifiers that can be used
as predictors for cancer diagnoses.

The mean quantization error (MQE) of clusteri is defined
as the average distance of its samples to its center cei, and
the Davies-Bouldin Index (DBI) for a complete clustering
hypothesis takes into account the compactness of the formed
clusters (via their MQE) as well as their distance:

MQEi =

∑
sj∈clusteri

dist(sj ,cei)

|clusteri| (1)

DBI = 1
k
·∑i(maxj,i�=j

MQEi+MQEj

dist(cei,cej)
) (2)

We assume that optimal clustering minimizes the DBI, i.e.
we will eventually use that number of clusters k that leads
to minimal DBI-values.
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Additionally, we also analyze how well this unsupervised
clustering approach solves the original classification task by
calculating the homogeneity of clusterj as the ratio r of the
samples of the most prominent class in the cluster:

r(classi, clusterj) =
|s:class(s)=classi∧s∈clusterj|

|clusterj| (3)

homogeneity(clusterj) = maxi (r(classi, clusterj)) (4)

As we are in the total homogeneity of a whole clustering
(i.e., a set of clusters formed for a given data collection),
we calculate homogeneitytotal as the weighted average of all
homogeneities:

homogeneitytotal(clusters) =
1
n
·∑c∈clusters (homogeneity(c) · |c|) (5)

where n is the total number of samples.

3.3 Identificatio of Classifier
In this section we describe the modeling methods applied

for identifying estimation models for cancer diagnosis: On
the one hand we apply hybrid modeling using machine learn-
ing algorithms and evolutionary algorithms for parameter
optimization and feature selection (as described in Section
3.3.1), on the other hand we apply genetic programming (as
described in Section 3.3.2).

Full medical data set
(blood parameters, 
tumor marker target 

values) 

1    0    1    1    0    0    0    1 

0    0    0    1    1    0    1    1 

1    0    1    1    1    0    1    0 

Data subset 
(selected blood 

parameters, tumor 
marker target 

values) 

Parents selection, 
crossover, mutation 

Evaluation, 
i.e., modeling: 

lin. reg., kNN, 
ANN, SVM, … 

(k-fold cross 
validation)

Offspring 
        selection 

0.482 

0.693 7   0.8   6 

6   0.5   8 

5   0.3   4 

1    0    0    1    1    0    0    1 0.551 4   0.2   7 

Figure 2: A hybrid evolutionary algorithm for fea-
ture selection and parameter optimization in data
based modeling.

3.3.1 Hybrid Modeling Using Machine Learning Al-
gorithms and Evolutionary Algorithms for Pa-
rameter Optimization and Feature Selection

Given a set of n features F = {f1, f2, . . . , fn}, the goal in
feature selection is to find a subset F ′ ⊆ F that is on the
one hand as small as possible and on the other hand allows
modeling methods to identify models that estimate given
target values as well as possible. Additionally, each data
based modeling method (except plain linear regression) has
several parameters that have to be set before starting the
modeling process. We have therefore used an evolutionary
algorithm to optimize feature selections as well as parameter
settings for various modeling methods:

The fitness of feature selection F ′ and training parameters
with respect to the chosen modeling method is calculated in
the following way: We use a machine learning algorithm m
(with parameters p) for estimating predicted target values
est(F ′, m, p) and compare those to the original target values
orig; the coefficient of determination (R2) function is used
for calculating the quality of the estimated values. Addition-
ally, we also calculate the ratio of selected features |F ′|/|F |.

Finally, using a weighting factor α, we calculate the fitness
of the set of features F ′ using m and p as

fitness(F ′, m, p) =

α ∗ |F ′|/|F | + (1− α) ∗ (1−R2(est(F ′, m, p), orig)). (6)

As an alternative to the coefficient of determination func-
tion we can also use a classification specific function that
calculates the ratio of correctly classified samples, either
in total or as the average of all classification accuracies of
the given classes (as for example described in [24], Sec-
tion 8.2): For all samples that are to be considered we
know the original classifications origCl, and using (prede-
fined or dynamically chosen) thresholds we get estimated
classifications estCl(F ′, m, p) for estimated target values
est(F ′,m, p). The total classification accuracy cak(F

′,m, p)
is calculated as

ca(F ′,m, p) =
|{j : estCl(F ′,m, p)[j] = origCl[j]}|

|estCl| (7)

Class-wise classification accuracies cwca are calculated as
the average of all classification accuracies for each given class
c ∈ C separately:

ca(F ′,m, p)c =

|{j : estCl(F ′,m, p)[j] = origCl[j] = c}|
|{j : origCl[j] = c}| (8)

cwca(F ′,m, p) =

∑
c∈C ca(F ′,m, p)c

|C| (9)

We can now define the classification specific fitness of feature
selection F ′ using m and p as

fitnesscwca(F
′,m, p) =

α ∗ |F ′|/|F | + (1− α) ∗ (1− cwca(F ′, m, p)). (10)

In [3], for example, the use of evolutionary algorithms for
feature selection optimization is discussed in detail in the
context of gene selection in cancer classification; in [27] we
have analyzed the sets of features identified as relevant for
modeling tumor markers AFP and CA15-3.

We have now used evolutionary algorithms for finding op-
timal feature sets as well as optimal modeling parameters for
models for tumor diagnosis; this approach is schematically
shown in Figure 2. A solution candidate is here represented
as [s1,...,np1,...,q ] where si is a bit denoting whether feature
Fi is selected or not and pj is the value for parameter j of the
chosen modeling method m. This rather simple definition of
solution candidates enables the use of standard concepts for
genetic operators for crossover and mutation of bit vectors
and real valued vectors: We use uniform, single point, and
2-point crossover operators for binary vectors and bit flip
mutation that flips each of the given bits with a given prob-
ability. Explanations of these operators can for example be
found in [9].

We have used strict offspring selection [1] which means
that individuals are accepted to become members of the next
generation if they are evaluated better than both parents;
i.e., the success ratio as well as the comparison factor were
set to 1.0.

Standard fitness evaluation as given in Equation 6 has
been used during the execution of the evolutionary pro-
cesses, and classification specific fitness evaluation as given
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in Equation 10 has been used for selecting the solution can-
didate eventually returned as the algorithm’s result.

The following techniques for training classifiers have been
used in this research project: Linear regression, neural net-
works, the k-nearest-neighbor method, support vector ma-
chines, and genetic programming. All these machine learn-
ing methods have been implemented using the HeuristicLab
framework2 [21], a framework for prototyping and analyz-
ing optimization techniques for which both generic concepts
of evolutionary algorithms and many functions to evaluate
and analyze them are available; we have used these imple-
mentations for producing the results summarized in the fol-
lowing section. In this section we give information about
these training methods; details about the HeuristicLab im-
plementation of these methods can for example be found in
[25].

Linear modeling
Given a data collection including m input features storing

the information about N samples, a linear model is defined
by the vector of coefficients θ1...m. For calculating the vec-
tor of modeled values e using the given input values matrix
u1...m, these input values are multiplied with the correspond-
ing coefficients and added: e = u1...m ∗ θ. The coefficients
vector can be computed by simply applying matrix division.
Theoretical background of this approach can be found in
[15].

k-Nearest-Neighbor Classification
Unlike other data based modeling methods, k-nearest-

neighbor classification [8] (kNN) works without creating any
explicit models. During the training phase, the samples are
simply collected; when it comes to classifying a new, un-
known sample xnew, the sample-wise distance between xnew

and all other training samples xtrain is calculated and the
classification is done on the basis of those k training samples
(xNN ) showing the smallest distances from xnew.

In the context of classification, the numbers of instances
(of the k nearest neighbors) are counted for each given class
and the algorithm automatically predicts that class that is
represented by the highest number of instances (included in
xNN ). In the test series documented in this paper we have
applied weighting to kNN classification: The distance be-
tween xnew and xNN is relevant for the classification state-
ment, the weight of “nearer” samples is higher than that of
samples that are “further away” from xnew.

In this research work we have varied k between 1 and 10.

Artificial Neural Networks
For training artificial neural network (ANN) models,

three-layer feed-forward neural networks with one linear out-
put neuron were created using backpropagation; theoretical
background and details can for example be found in [17].
In the tests documented in this paper the number of hid-
den (sigmoidal) nodes hn has been varied from 5 to 100; we
have applied ANN training algorithms that use internal val-
idation sets, i.e., training algorithms use 30% of the given
training data as validation data and eventually return those
network structures that perform best on these internal vali-
dation samples.

Support Vector Machines
Support vector machines (SVMs) are a widely used ap-

2http://dev.heuristiclab.com

proach in machine learning based on statistical learning the-
ory [20]. The most important aspect of SVMs is that it is
possible to give bounds on the generalization error of the
models produced, and to select the corresponding best model
from a set of models following the principle of structural risk
minimization [20].

In this work we have used the LIBSVM implementation
described in [6], which is used in the respective SVM in-
terface implemented for HeuristicLab; here we have used
Gaussian radial basis function kernels with varying values
for the cost parameters c (c ∈ [0, 512]) and the γ parameter
of the SVM’s kernel function (γ ∈ [0, 1]).

3.3.2 Genetic Programming
As an alternative to the approach described in the previ-

ous sections we have also applied a classification algorithm
based on genetic programming (GP) [12] using a structure
identification framework described in [24] and [2], in combi-
nation with strict offspring selection; this GP approach has
been implemented in HeuristicLab.

We have used the following parameter settings for our GP
test series: The mutation rate was set to 20%, gender spe-
cific parents selection [22] (combining random and roulette
selection) was applied as well as strict offspring selection
[1] (OS, with success ratio as well as comparison factor set
to 1.0). The functions set described in [24] (including arith-
metic as well as logical ones) was used for building composite
function expressions.

Population of
Models

Parents Selection

Test (Evaluation)
of Models

Offspring
Selection

x+

xx
*

x *

xx

x+

x *

xx

Generation of New
Models (by Crossover,

Mutation, …)

Figure 3: The genetic programming cycle [14] in-
cluding offspring selection [1].

In addition to splitting the given data into training and
test data, the GP based training algorithm implemented in
HeuristicLab has been designed in such a way that a part of
the given training data is not used for training models and
serves as validation set; in the end, when it comes to return-
ing classifiers, the algorithm returns those models that per-
form best on validation data. This approach has been chosen
because it is assumed to help to cope with over-fitting; it is
also applied in other GP based machine learning algorithms
as for example described in [4].
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4. EMPIRICAL RESULTS
We have used the data described the data described in

Section 2; these data partitions are the same as those used
in previous research described in [26].

4.1 Analysis of Identifie Data Clusters
The optimal number of clusters for the given data de-

scribed in Section 2 was identified in the following way: Dif-
ferent values for the number of clusters k (listed in Table
3) have been applied for clustering each data set; each data
partition was clustered five times independently using all
variables as well as using all variables except tumor markers.
For each clustering we calculated the DB index (as defined
in Equation 2) and in Table 3 we list the resulting average
values. As we see in the table below and also in Figure 4,
setting the number of clusters to 25 seems to be the best
decision.

Table 3: Average Davies-Bouldin index values for
clusterings of the given data.

k Davies-Bouldin index (μ± σ)
3 1.95 ± 0.17
5 2.10 ± 0.20
10 1.99 ± 0.18
15 1.93 ± 0.28
20 1.76 ± 0.30
25 1.70 ± 0.35
30 1.74 ± 0.34
35 1.75 ± 0.33
40 1.74 ± 0.34

1
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1,4

1,6

1,8

2

2,2

2,4

3 5 10 15 20 25 30 35 40
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Da
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Figure 4: Average Davies-Bouldin index values for
clusterings of the given data.

Using this optimal number of clusters (k = 25) we clus-
tered the given data partitions an analyzed the quality of
the so achieved clustering with respect to their class homo-
geneity (using Equation 5). The results of this analysis are
summarized in Table 4 and shown in Figure 5:

• Breast cancer data can be clustered with approxi-
mately 77.9% average homogeneity (with respect to
class values) if all variables are used; using no tumor
markers or only using tumor markers decreases this
value and thus decreases the clustering quality.

• Melanoma data can be clustered with approximately
76.5% average homogeneity using all variables; using
only standard values or only tumor markers leads to
worse clustering results.

• Respiratory system cancer (RSC) data can be clus-
tered with almost 90% average homogeneity; if tumor
markers are omitted, the average class homogeneity in
the formed clusters is approximately 85%.

Table 4: Cluster homogeneity with respect to sam-
ple classifications for the analyzed data partitions.

Clustering task Cluster homogeneity
(weighted average, μ± σ)

BC data, all variables 77.878 ± 0.882
BC data, no tumor markers 74.704 ± 1.896
BC data, only tumor markers 77.552 ± 1.114
Mel data, all variables 76.510 ± 1.009
Mel data, no tumor markers 74.720 ± 0.521
Mel data, only tumor markers 73.876 ± 1.063
RSC data, all variables 88.598 ± 0.770
RSC data, no tumor markers 84.988 ± 0.882
RSC data, only tumor markers 89.646 ± 1.113
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Figure 5: Cluster homogeneity with respect to sam-
ple classifications for the analyzed data partitions.

4.2 Identificatio of Cancer Predictors Using
Clustered Data

Finally, using the clusters identified as described previ-
ously we have performed machine learning in order to learn
classifiers for the given samples. All clusters were used sep-
arately, i.e., each cluster was used for training classification
models. Five-fold cross-validation [11] training / test series
have been executed; this means that the available data are
separated in five (approximately) equally sized, complemen-
tary subsets, and in each training / test cycle one data subset
is chosen is used as test and the rest of the data as train-
ing samples. In order to avoid overfitting, all clusters with
less than 50 samples were (for each clustering separately)
combined into “rest” clusters.

In this section we document test accuracies (μ, σ) for the
investigated cancer types; we here summarize test results for
modeling cancer diagnoses using tumor markers (TMs) as
well as for modeling without using tumor markers. The test
accuracy is calculated as the ratio of test samples that were
classified correctly; as the clusters are inequally sized, we
have calculated the test accuracy for each cluster separately,
weighted each so resulting classification rate with the size of
the cluster and so retrieve the total classification accuracy.

Linear modeling, kNN modeling, ANNs, and SVMs have
been applied for identifying estimation models for the se-
lected tumor types, genetic algorithms with strict OS have
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been applied for optimizing variable selections and modeling
parameters; standard fitness calculation as given in Equa-
tion 6 has been used by the evolutionary process, the classifi-
cation specific one as given in Equation 10 has been used for
selecting the eventually returned model. The probability
of selecting a variable initially was set to 30%. Addition-
ally, we have also applied simple linear regression using all
available variables. Finally, genetic programming with strict
offspring selection (OSGP) has also been applied. In all test
series the maximum selection pressure was set to 100, i.e.,
the algorithms were terminated as soon as the selection pres-
sure reached 100. The population size for genetic algorithms
optimizing variable selections and modeling parameters was
set to 10, for GP the population size was set to 700 and
the maximum tree size (ms) to 100. In all modeling cases
except kNN modeling regression models have been trained,
the threshold for classification decisions was in all cases set
to 0.5 (since the absence of the specific tumor is represented
by 0.0 in the data and its presence by 1.0).

The so achieved results are summarized in the following
Tables 5 – 7 and in Figure 6.
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Figure 6: Classification results overview.

5. DISCUSSION AND CONCLUSION
As we clearly see in the classification results section, the

here applied approach of using pre-clustered data and evo-
lutionary modeling techniques leads to better results than
those reported in previous test series [26]:

Table 5: Classification results for breast cancer di-
agnosis

Results using all variables
Modeling method Test accuracies (μ ± σ)
OSGA + LR, α = 0.1 82.690% ± 3.64
OSGA + kNN, α = 0.1 79.069% ± 3.11
OSGA + ANN, α = 0.1 81.319% ± 4.04
OSGA + SVM, α = 0.1 79.058% ± 2.93
OSGP, ms = 100 84.204% ± 2.82

Results using no tumor markers
Modeling method Test accuracies (μ ± σ)
OSGA + LR, α = 0.1 72.082% ± 4.30
OSGA + kNN, α = 0.1 78.247% ± 3.71
OSGA + ANN, α = 0.1 75.025% ± 3.40
OSGA + SVM, α = 0.1 78.136% ± 3.08
OSGP, ms = 100 77.787% ± 4.81

Table 6: Classification results for melanoma diagno-
sis

Results using all variables
Modeling method Test accuracies (μ ± σ)
OSGA + LR, α = 0.1 79.526% ± 3.04
OSGA + kNN, α = 0.1 73.710% ± 3.99
OSGA + ANN, α = 0.1 80.171% ± 2.82
OSGA + SVM, α = 0.1 79.700% ± 2.48
OSGP, ms = 100 80.319% ± 4.64

Results using no tumor markers
Modeling method Test accuracies (μ ± σ)
OSGA + LR, α = 0.1 77.519% ± 4.52
OSGA + kNN, α = 0.1 71.133% ± 4.04
OSGA + ANN, α = 0.1 77.596% ± 4.27
OSGA + SVM, α = 0.1 78.086% ± 4.29
OSGP, ms = 100 76.072% ± 5.89

Table 7: Classification results for respiratory system
cancer diagnosis

Results using all variables
Modeling method Test accuracies (μ ± σ)
OSGA + LR, α = 0.1 93.518% ± 3.37
OSGA + kNN, α = 0.1 90.710% ± 3.42
OSGA + ANN, α = 0.1 94.148% ± 2.84
OSGA + SVM, α = 0.1 92.695% ± 4.19
OSGP, ms = 100 93.518% ± 3.05

Results using no tumor markers
Modeling method Test accuracies (μ ± σ)
OSGA + LR, α = 0.1 92.242% ± 3.75
OSGA + kNN, α = 0.1 85.760% ± 2.56
OSGA + ANN, α = 0.1 93.346% ± 3.08
OSGA + SVM, α = 0.1 91.462% ± 2.91
OSGP, ms = 100 92.411% ± 2.36

• The average classification rate for breast cancer us-
ing all variables could be raised from maximum ∼82%
to ∼84%, omitting tumor markers from maximum
∼75.5% to ∼78%.

• The average classification rate for melanoma using all
variables could be raised from maximum ∼75% to
∼80%, omitting tumor markers from maximum ∼75%
to ∼78%.

• The average classification rate for respiratory system
cancer using all variables could be raised from maxi-
mum ∼91.5% to ∼94%, omitting tumor markers from
maximum ∼87% to ∼92%.

These results are very encouraging and in the future we
will research the capability of this approach to lead to better
results on other data sets (real world as well as benchmark
data collections).

Furthermore, we plan to use an evolutionary algorithm for
optimizing the sets of features for clustering the data in order
to even further improve the resulting cluster homogeneities
and classification rates.
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