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ABSTRACT

The development of computer-aided diagnosis systems for
skin cancer detection has attracted a lot of interest in the
research community. In particular, the availability of an
accurate automatic segmentation tool for detecting skin le-
sions from background skin is of primary importance for the
overall diagnosis system. In this paper we investigate the
capability of a color image segmentation method based on
Genetic Algorithms in discriminating skin lesions. Experi-
mental results show that the segmentation approach is able
to detect lesion borders quite accurately, thus coupled with
a merging technique of the surrounding region could reveal
a promising method for isolating skin tumor.

Categories and Subject Descriptors

H.2.8 [Database Managment]: Database Applications
—Data Mining ; I.4.6 [Image Processing and Computer
Vision]: Segmentation; I.5.3 [Pattern Recognition]: Clus-
tering

General Terms

Algorithms

Keywords

Image segmentation, Genetic algorithms, Medical images

1. INTRODUCTION
The application of automatic computerized image analysis

methods for skin lesion detection is an active research area
that can give a valid help in early diagnosing skin cancer
[4]. Computer-assisted diagnosis of skin lesions is a valid
support for clinicians because, often, visual inspection is not
adequate for early detection, which is decisive for increasing
survival rate. It consists of five general steps [10] : image
acquisition, preprocessing, segmentation, feature extraction,
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and classification. After a digital image is acquired, it is
preprocessed to improve its quality by eliminating noise or
artifacts present on the image, such as hairs, normalizing
pixel intensity, removing reflection. The next step amounts
to image segmentation. This step is crucial for automated
diagnosis since the detection of accurate borders of the skin
lesion affects the accuracy of subsequent phases. After that,
the main features of the lesion are extracted to feed into
a classifier system that must decide whether the lesion is
either malignant or benign.

A segmentation technique should trace the lesion bor-
ders as much accurately as possible and should avoid over-
segmentation. Because of the importance of correct bor-
der identification, a high number of segmentation techniques
have been developed using different approaches such as fuzzy
logic based thresholding [22], clustering [15, 12, 18, 24, 23],
neural networks [6, 17], supervised learning [20], active con-
tour [23], evolutionary computation [21]. However, it is
worth to note that there is no a general technique suitable
for all the kinds of applications.

In this paper we investigate the capability of a color image
segmentation technique, based on Genetic Algorithms, in
discriminating skin lesion. The method, named C-GeNCut
(Color Genetic Normalized Cut) and presented in [1], repre-
sents an image as a weighted undirected graph, where nodes
correspond to pixels, and edges connect similar pixels. Simi-
larity between two pixels is computed by taking into account
brightness, color and texture content. The algorithm has
been tested on ten skin images presenting different types of
tumor, and compared with the algorithm of Maji et al. [13].

The paper is organized as follows. The next section gives
a description of the method used. Section 3 presents the
result of the experiments on the skin lesion images, Section 4
concludes the paper and outlines future research directions.

2. METHODOLOGY
In this section we review the main concepts of the method

C-GeNCut [1].
An image R is represented as a weighted undirected graph

G = (V, E, w), whose nodes V correspond to image pixels,
and an edge (i, j) ∈ E connects two pixels i and j if they sat-
isfy some property suitably defined that takes into account
both pixel characteristics and spatial distance. w : E → R
is a function that assigns a weight to graph edges. A weight
w(i, j) corresponds to the likelihood that pixels i and j are
in the same image region and represents a similarity value
between i and j. The higher the value of w(i, j), the more
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likely the two pixels are within the same region. Let W de-
note the adjacency weight matrix of the graph G. A generic
element Wij contains the weight w(i, j) if nodes i and j are
connected, zero otherwise.

The computation of weights is performed by using the
Intervening Contour cue [11, 5, 8, 7], based on the multi-
spectral Pb detector as defined in [2].

In this framework, given a generic pixel, the value of the
multiscale Pb detector at that pixel is considered. If the
maximum value along a straight line connecting the two pix-
els i and j in the image plan is large, then a deep change in
brightness, color and texture and, consequently, an interven-
ing contour is present, indicating that the two pixels don’t
belong to the same segment. On the other hand, if the value
of the multiscale Pb detector is sufficiently weak, the affinity
between the two pixels will be very high. More formally, the
weight w(i, j) between the pixels i and j is computed as:

w(i, j) =
n

e
−maxp∈line(i,j){mPb(p)}/ρ

if ||X(i) − X(j)||2 < r, i 6= j

0 otherwise.

where line(i,j) is a straight line between i and j, X(i) is the
spatial location of the pixel i, r is a distance threshold and
ρ is a constant.

Multiscale Pb detector is based on the Pb detector func-
tion Pb(x, y, θ), which is obtained by evaluating the differ-
ence in local image brightness, color and texture channels.

Specifically, input image is transformed into four distinct
channels. The first three channels are those of the CIE Lab
colorspace, taking into account brightness and color, while
the last channel is related to the image texture content. For
each image channel, an oriented gradient signal is computed,
G(x, y, θ), at position (x, y), by placing a circular disc cen-
tered at location (x, y), splitting it into two half-discs by
a diameter at angle θ, and finally computing the χ2 dis-
tance between the intensity histograms of the two half-discs.
Furthermore, gradients at three scales [σ/2, σ, 2σ] are con-
sidered for each channel, in order to detect fine and coarse
image features.

The Pb detector processes the channels separately and
then combines the oriented gradient signals obtained from
the different channels at multiple scales into a single multi-
scale oriented signal:

mPb(x, y, θ) =
X

s

X

i

αi,sGi,σ(i,s)(x, y, θ)

where s represents the scales index, i the feature channels
index (brightness, color a, color b and texture). The oriented
gradient signal is Gi,σ(i,s)(x, y, θ) in channel i where the ra-
dius of the disc is σ(i, s). The parameters αi,s weight the
contribution of each gradient signal. The angle θ defining
the orientation, takes eight different values in the interval
[0, π). The final value of the multispectral Pb detector is
the maximum response over the eight orientations:

mPb(x, y) = maxθ{mPb(x, y, θ)}.

2.1 Genetic Representation and Operators
The representation of individuals is the locus-based adja-

cency representation proposed in [16]. In this graph-based
representation an individual of the population consists of
N genes g1, . . . , gN and each gene can assume allele val-
ues j in the range {1, . . . , N}. Genes and alleles represent
nodes of the graph G = (V, E, w) modelling an image, and
a value j assigned to the ith gene is interpreted as a link

between the pixels i and j. The initialization process as-
signs to each node i one of its neighbors j, and the kind of
crossover operator adopted is uniform crossover. The mu-
tation operator randomly assigns to each node i one of its
neighbors. For both initialization and mutation, the deter-
mination of the neighbors of each node takes into account
not only the spatial closeness but also the pixel affinity.
More in details, given a generic node i in the graph, let
wh

max = {w1, . . . , wh | w1 ≥, . . . ,≥ wh} be the first h high-
est weights of row i in the weight adjacency matrix W .

The h nearest neighbors of i, denoted as nnh
i , are then

defined as nnh
i = {j | w(i, j) ∈ wh

max}. nnh
i is thus the set

of those pixels that are no more than r pixels apart from
i, and that have maximum similarity with i. The kind of
crossover adopted is uniform crossover.

2.2 Fitness Function
The fitness function is an extension of the concept of nor-

malized cut of Shi and Malik [19]. Let G = (V, E, w) be the
graph representing an image, W its adjacency matrix, and
P = {R1, . . . , Rk} a partition of G in k clusters.

For a generic cluster R ∈ P , let

cr =
P

i∈R,j /∈R Wij mr =
P

i∈R,j∈R Wij m =
P

i∈V,j∈V Wij

be respectively the sum of weights of edges on the boundary
of R, the sum of weights of edges inside R, and the total
graph weight sum. The weighted normalized cut WNCut
measures for each cluster in P the fraction of total edge
weight connections to all the nodes in the graph

WNCut =
k

X

r=1

cr

mr + cr

+
cr

(m − mr) + cr

Because of the adopted affinity measure w, more uniform
regions can be obtained with low cut values between the
subgraphs representing the regions and the rest of the graph.
This implies that low values of WNcut are preferred.

3. EXPERIMENTAL RESULTS
In this section we present the results of C-GeNCut on six

skin lesion images representing different melanoma (Figures
(1-6)) and on four images depicting other kinds of skin tu-
mors different from melanoma (Figures (7-10)), and evaluate
the performances of the algorithm in segmenting the mean-
ingful objects, in particular in detecting the lesion region by
distinguishing it from the skin. Similarly to [1], we compare
the performances of the algorithm with the segmentations
obtained by using the Normalized Cut approach, adopted
in some contexts for medical image segmentation [9, 14, 25,
3]. In particular, we choose the algorithm of Maji et al.
[13] (Biased NCut) as the representative, in the following
referred as C-NCut, because it is a Normalized Cut based
algorithm for color-texture images. We observe that both C-
GeNCut and C-NCut, are segmentation techniques for gen-
eral kinds of images based on brightness, color and texture.
Consequently, our goal is to assess which of the two kinds of
approaches is more apt in segmenting skin lesion images.

The skin lesion images employed for the experimentation
have been downloaded from DermAtlas1, an open access web
site with dermatological images, hosted by Johns Hopkins

1http://dermatlas.med.jhmi.edu

1472



(a) (b) (c) (d)

Figure 1: Segmentation on a melanoma image. (a) is the original image, (b) is the C-GeNCut segmentation
result, (c) is the C-NCut segmentation result by fixing the same number of segments as C-GeNCut, k = 7 and
(d) is the C-NCut segmentation result with k = 2.

(a) (b) (c) (d)

Figure 2: Segmentation on a melanoma image. (a) is the original image, (b) is the C-GeNCut segmentation
result, (c) is the C-NCut segmentation result by fixing the same number of segments as C-GeNCut, k = 5 and
(d) is the C-NCut segmentation result with k = 2.

(a) (b) (c) (d)

Figure 3: Segmentation on a melanoma image. (a) is the original image, (b) is the C-GeNCut segmentation
result, (c) is the C-NCut segmentation result by fixing the same number of segments as C-GeNCut, k = 5 and
(d) is the C-NCut segmentation result with k = 2.

(a) (b) (c) (d)

Figure 4: Segmentation on a melanoma image. (a) is the original image, (b) is the C-GeNCut segmentation
result, (c) is the C-NCut segmentation result by fixing the same number of segments as C-GeNCut, k = 10
and (d) is the C-NCut segmentation result with k = 2.
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(a) (b) (c) (d)

Figure 5: Segmentation on a melanoma image. (a) is the original image, (b) is the C-GeNCut segmentation
result, (c) is the C-NCut segmentation result by fixing the same number of segments as C-GeNCut, k = 9 and
(d) is the C-NCut segmentation result with k = 2.

(a) (b) (c) (d)

Figure 6: Segmentation on a melanoma image. (a) is the original image, (b) is the C-GeNCut segmentation
result, (c) is the C-NCut segmentation result by fixing the same number of segments as C-GeNCut, k = 3 and
(d) is the C-NCut segmentation result with k = 2.

University’s Dr. Bernard A. Cohen and Dr. Christoph U.
Lehmann.

The version of the Biased NCut software is written in
MATLAB and it is available at http://ttic.uchicago.edu/
smaji/projects/biasedNcuts/. However we eliminated the
interactive mode from the available algorithm specifically
for performing comparisons with C-GeNCut.

The weight matrix of each image has been computed in
the same way for both C-NCut and C-GeNCut methods,
and it is based on the Intervening Contour framework that
uses the multiscale Pb detector. We fix the same parameter
values as in [1], which are r = 5 and ρ = 0.1. Recall that,
about the Pb detector, the parameter σ, which defines the
scales, is 5 pixels for the brightness channel, while for color
and texture channels σ is 10 pixels. The parameters αi,s are
0.01, 0.01, 0.02 0.02, 0.02, 0.03, 0.02, 0.02, 0.02, 0.01, 0.01 and
0.01.

Since C-NCut needs the number k of clusters, we executed
the algorithm by fixing the number k of segments to the same
number of clusters found by C-GeNCut, and with k = 2
which is the best parameter value to detect the lesion region.

As regards C-GeNCut parameters, we set crossover rate
to 0.9, mutation rate to 0.2, elite reproduction 10% of the
population size, roulette selection function. The population
size was 100, the number of generations 80.

In the following, for each image, we compare the segmen-
tation results of C-GeNCut and C-NCut by depicting the
contours of the regions obtained by the two approaches. For
a more clear visualization, we show four images for each
skin lesion image. The first image is the original image,
the second one reports the boundary lines (in red) of the
segmentation obtained by C-GeNCut on the original color
image, the third image delineates the contours obtained by

C-NCut (in red) on the original color image with k equal
to the same number of segments found from C-GeNCut, the
fourth image represents the contours obtained by C-NCut
with k = 2.

First of all, we compare C-GeNCut and C-NCut on the
melanoma images (Figures (1-6)). In Figure 1(a), repre-
senting a red nodular melanoma on a leg, the regions con-
tours are detected from both C-GeNCut (Figure 1(b)) and
C-NCut (Figure 1(c)). Furthermore, C-NCut perfectly de-
lineates melanoma contour when the number of segments is
fixed to 2 (Figure 1(d)).

Figure 2 is a red and purple gelatinous nodular melanoma
on a leg. We observe as C-GeNCut performs a more precise
segmentation of the lesion (Figure 2 (b)) than C-NCut which
excludes the top left portion of the melanoma from the lesion
region (Figure 2 (c)). When k = 2, C-NCut erroneously
divides the image in two parts, of which the left segment
contains the melanoma and the remaining left part of the
skin.

Figure 3 illustrates a thick melanoma on an arm with
smaller surrounding metastatic tumor nodules. Although
C-GeNCut is not able to discriminate the melanoma from
the surrounding nodules, it better circumscribes the region
where both the lesions are located (Figure 3(b)), while C-
NCut improperly includes the skin at the top side of the le-
sion region (Figure 3(c)). Also in this case the 2-segmentation
is not able to isolate the tumor (Figure 3(d)).

In Figure 4, representing an ulcerated black melanoma
arising of a brown slightly elevated plaque, both C-GeNCut
and C-NCut are able to capture the melanoma area.

However, C-GeNCut segments the plaque together with
the melanoma (Figure 4 (b)), while C-NCut separates the
plaque from the melanoma, including the plaque into a healthy
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(a) (b) (c) (d)

Figure 7: Segmentation on a carcinoma image. (a) is the original image, (b) is the C-GeNCut segmentation
result, (c) is the C-NCut segmentation result by fixing the same number of segments as C-GeNCut, k = 7 and
(d) is the C-NCut segmentation result with k = 2.

(a) (b) (c) (d)

Figure 8: Segmentation on a carcinoma image. (a) is the original image, (b) is the C-GeNCut segmentation
result, (c) is the C-NCut segmentation result by fixing the same number of segments as C-GeNCut, k = 4 and
(d) is the C-NCut segmentation result with k = 2.

(a) (b) (c) (d)

Figure 9: Segmentation on a fibroepithelioma image. (a) is the original image, (b) is the C-GeNCut segmen-
tation result, (c) is the C-NCut segmentation result by fixing the same number of segments as C-GeNCut,
k = 7 and (d) is the C-NCut segmentation result with k = 2.

(a) (b) (c) (d)

Figure 10: Segmentation on a hemangioma image. (a) is the original image, (b) is the C-GeNCut segmentation
result, (c) is the C-NCut segmentation result by fixing the same number of segments as C-GeNCut, k = 13
and (d) is the C-NCut segmentation result with k = 2.
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skin region (Figure 4(c)). Figure 4(d) shows that C-NCut
separates the image in two parts, completely disregarding
the melanoma.

Figures 5, 6 are two brown papules representing, respec-
tively, a melanoma on a chest and a melanoma on an arm.
Both C-GeNCut and C-NCut properly discriminate the le-
sions region in both the images, in Figure 5(b), Figure 6(b)
for C-GeNCut and in Figure 5(c), Figure 6(c) for C-NCut
respectively. An incorrect division of the image can be seen
in Figures 5(d) and 6(d).

The next images we consider for evaluation (Figures (7-
10)) regard skin tumor, different from melanoma. Figures
7 and 8 depict a friable red gelatinous carcinoma on an ab-
domen and a leg, respectively, while Figure 9 is a red en-
larging fibroepithelioma of Pincuson on a chest. For two
images, C-NCut over-segments the skin lesion (Figure 7 (c),
Figure 9 (c)), and fails in depicting the tumor border (Figure
7 (d), Figure 8 (d), Figure 9 (d)), while C-GeNCut depicts
quite well the contours (Figure 7 (b), Figure 8 (b), Figure 9
(b)). In particular, we can observe that C-GeNCut captures
the right shape of the tumor in Figure 8 (b), while C-NCut
incorrectly includes the skin on the top side of the lesion
segment (Figure 8 (c)).

Figure 10 is a red hemangioma appeared on a left labia. In
such a case segmentation results of C-GeNCut and C-NCut
are quite comparable. Although C-NCut is more precise
than C-GeNCut in segmenting the lesion region (Figure 10
(c)), C-GeNCut behaves promising in discriminating the le-
sion from the rest of the skin (Figure 10 (b)). However, for
k = 2, C-NCut again divides the image in two parts, one
containing the lesion, but also the background skin (Figure
10)(d)). To conclude, though C-GeNCut generates an over-
segmentation of the healthy skin, it is able to detect quite
accurately the borders of skin lesion, thus a post processing
phase that isolates tumor while merging the surrounding re-
gion could produce a promising and reliable lesion border
detector.

4. CONCLUSIONS
The paper presented the application of a color image seg-

mentation algorithm based on Genetic Algorithms for the
segmentation of skin lesion images with the aim of detecting
skin cancer. Experiments on different dermatological images
showed the good performance of the approach, also when
compared with another color image segmentation method.
Future work aims at extending the segmentation algorithm
for an accurate skin lesion detector, by including an appro-
priate region merging approach to isolate the lesions from
the whole image background.
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