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ABSTRACT
Parkinson’s Disease is a devastating illness with no currently
available cure. As the population ages, the disease becomes
more common with a large financial cost to society. A rapid
and accurate diagnosis, as well as practical monitoring meth-
ods are essential for managing the disease as best as possible.
This paper discusses two approaches to discriminating move-
ment data between healthy controls or Parkinson’s Disease
patients. One is a standard statistical analysis, influenced
by prior work into classifying patients. The other is a pro-
grammatic expression evolved using genetic programming,
which is trained to observe differences in specific motion
segments, rather than using arbitrary windows of a full data
series. The performance of the statistical analysis method
is relatively high, but it still cannot discriminate as well
as the evolved classifier. This study compares favourably
to previous work, highlighting the usefulness of analysing
a successful classifier to influence design decisions for future
work. Examination of the evolved programmatic expressions
that had high discriminatory ability provided useful insight
into how Parkinson’s Disease patients and healthy subjects
have differing movement characteristics. This could be used
to inform future research into the physiology of repetitive
motions in Parkinson’s Disease patients.
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1. INTRODUCTION
Parkinson’s Disease is a debilitating neurodegenerative

disease, currently estimated to effect as many as 1 in 500
in the UK [1]. While the cause of the disease is yet to be
known, it manifests itself by the gradual deterioration of
dopamine carrying neurons in an affected person’s brain.
This has the effect of causing severe movement disorders,
such as bradykinesia, rigidity, and tremor. There is no cure
for Parkinson’s Disease, only treatment to help deal with
the symptoms. However, the main medication, Levodopa,
has a side effect whereby patients who have been taking the
drug long term start to display movement disorders, termed
“Levodopa induced dyskinesias” [6, 10]. Managing the trade
off between these and Parkinsonian symptoms can become
very challenging and time consuming. As a result, an early
and accurate diagnosis is key to the successful monitoring of
the disease. Unfortunately, it has been estimated that up to
25% of early Parkinson’s Disease diagnoses by primary care
practitioners are inaccurate [5], due to the common similar-
ity in the presentation of symptoms to other neurodegenera-
tive diseases or physical conditions. Thus, an objective and
accurate system to diagnose and monitor the disease would
be extremely beneficial.

We have previously shown that it is possible to distinguish
Parkinson’s Disease patients from healthy controls by using
a variant of genetic programming (GP) termed Cartesian
Genetic Programming (CGP), from data obtained from a
simple standard clinical exam, finger tapping [8, 7, 9]. This
work highlighted several key features of movement present
in Parkinson’s Disease patients that can help to differenti-
ate it from healthy motion, in particular the double peak
of acceleration; and closing tap velocity. This paper details
two contrasting approaches to use this knowledge to improve
classifier accuracy. The two methods were a standard sta-
tistical analysis, and a second genetic programming based
classifier, this time using segmented tap data.

2. METHODS

2.1 Patients
49 patients were assessed at Leeds General Infirmary (UK)

between August 2009 and October 2010. They represented
varying stages of the disease, (median Hoehn and Yahr scale
score of 2.5). 41 age-matched healthy controls were assessed
during the same time frame, all with no prior clinical di-
agnosis of a neurodegenerative condition. The gender ra-
tio (male:female) for the Parkinson’s Disease patients was
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32:17, representing the higher incidence rate amongst men,
and 14:27 for the control group. The mean ages of the two
groups were 67 (±9) and 64 (±10) for the patient and con-
trol group respectively. All patients were assessed while in
the ON stage of Levodopa treatment.

2.2 Test
The data collected for this study was undertaken as one

part of the Unified Parkinson’s Disease Rating Scale (UP-
DRS), the current gold standard for staging Parkinson’s Dis-
ease [3]. It consists of five sections, four of which are multiple
choice questions while the remaining part is a motor exam
scored by a trained clinician. During the application of the
motor exam 18 different activities are assessed, one of which
is finger tapping. For this the patient is instructed to extend
their index finger and thumb on their dominant hand, and
repeatedly bring them together in a tapping motion, using
movements as fast and with as large amplitude as possible.
The test finishes after 10 taps have been completed. This is
then repeated for the non-dominant hand. This is typically
assessed, along with the other sections of the UPDRS, by
a trained clinician. The patient then receives a single score
from 0 to 4. The patients were also assessed on the UPDRS
finger tapping scale during data collection, with the median
score being 1.
However, there are several issues with this process, which

is partly why we have decided to investigate the finger tap-
ping test and see whether assessment can be improved. Firstly,
having the test be assessed by a single person introduces an
element of subjectivity to the marking procedure. This is
crucially important, as the aim of finger tapping is to gain
an understanding of one of the cardinal features of Parkin-
son’s Disease, bradykinesia. This is a commonly misused
term for several closely related movement disorders;

• Akinesia - hesitations in initiating movement

• Hypokinesia - reduced amplitude of movement

• ‘True’ Bradykinesia - slowness of movement

The single score of the finger tapping test is intended
to take all of these factors into account, however it has
been shown that clinicians have a tendency to assign dispro-
portionately greater weight to amplitude than other mea-
sures [4]. This is a concern, as amplitude has been shown to
be one of the variables of movement least affected by Parkin-
sonian medication [2]. As such, an objective analysis of the
finger tapping exam would allow for a more accurate under-
standing of exactly what constitutes bradykinesia and how
it manifests itself in simple repetitive motor tasks.

2.3 Equipment
A Polhemus Patriot position sensor was used to obtain

real time information about the subject’s movements. The
Patriot consists of an electromagnetic source, with two small
lightweight sensor units. These receivers were attached to
the subject’s index finger and thumb while they performed
the finger tapping test. The sensors provided the position of
the digit at a sampling frequency of 60Hz and with 6 degrees
of freedom, while being unobtrusive for the subject.

2.4 Data Processing
The raw coordinate positional values were obtained from

the two sensors and passed through a Butterworth Low Pass

Filter with cut-off frequency 5Hz. The difference between
the two sensors was taken to provide values relative to the
thumb. Then, the Euclidean distance (Equation 1) was cal-
culated at each time step to be used as a measure of sepa-
ration between the digits.√

x2 + y2 + z2 (1)

To help reduce the effects of varying hand sizes, the sepa-
ration values were normalised by dividing by the maximum
separation for each test. This produced a continuous, nor-
malised, view of the subject’s motion throughout the 30 sec-
ond test period. Taps were defined as intervals between two
consecutive local minima. Figure 1 shows a trace of sep-
aration values, sampled over a 3 second period, with taps
described as the period of separation between two succes-
sive minima. The maxima of the waveform indicate the
index finger and thumb are at maximum distance from each
other, and touching when the separation is at a minimum.
The taps can be further sub-divided into the opening and
closing phases of the movement. The ‘max sep’ label demon-
strates how the value of maximum separation was derived.

2.5 Statistical Analysis
Various measurement variables that could prove useful

in distinguishing the performance of healthy controls and
Parkinson’s Disease patients were derived, with knowledge
gained from analysing the earlier automated classification
system. These consisted of separation, speed (the magni-
tude of velocity was calculated as we were not concerned
with direction) and acceleration metrics. Nearly all of the
variables consisted of a single measure taken for each tap,
then an average taken to generate a single value for each
test. While in most cases this average was the mean, the co-
efficient of variation was also used. The calculated variables
are as follows:

• Mean tap separation: The maximum separation for
each tap was taken as that tap’s separation, with the
mean over the whole test then taken to obtain a single
value for each test.

• Separation fatigue: The ratio of the last 5 tap separa-
tions to the first 5 (representing decrementing ampli-
tude over the test duration).

• Separation rhythm: To get a measure for the rhythm
of the tapping separation, the coefficient of variation
was calculated over the tap separation values.

• Mean speed: The mean speed value from the entire
trace.

• Mean opening speed: The opening speed was defined
as the maximum speed during the first half of the tap
motion. The mean was then calculated to obtain a
single output for each test.

• Mean closing speed: The closing speed was defined as
the maximum speed during the second half of the tap
motion. The mean was then calculated to obtain a
single output for each test.

• Mean opening acceleration: The peak of positive ac-
celeration during the first half of the tap motion. The
mean was then calculated to obtain a single output for
each test.
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Figure 1: Obtaining the tap separation values.

• Mean opening deceleration: The peak of negative ac-
celeration during the first half of the tap motion. The
mean was then calculated to obtain a single output for
each test.

• Mean closing acceleration: The peak of positive accel-
eration during the second half of the tap motion. The
mean was then calculated to obtain a single output for
each test.

• Mean closing deceleration: The peak of negative accel-
eration during the second half of the tap motion. The
mean was then calculated to obtain a single output for
each test.

Figure 2 shows how these measures were obtained.

2.6 Classification

2.6.1 Genetic Program
The classifier was a standard syntax tree representation of

a programmatic expression evolved using genetic program-
ming. Functions available were standard arithmetic opera-
tions (+,−, ∗, MAX). The terminal set comprised of two
groups: constants and inputs. Constants were floating point
numbers in a pre-determined range (1.0, 10.0). The input
set consisted of floating point values in the half open inter-
val [0, 1), representing a fraction of the current input tap
sequence. The measure of the data used for the input tap
sequence was the normalised separation, from only the dom-
inant hands, as these had previously shown to be most dis-
criminatory [8]. The programs were evolved over 100 gener-
ations, with a population of 200. Standard subtree crossover
and point mutation (with mutation rate of 4%) were used to
guide the evolutionary process, with parents being selected
by tournaments of size 4. Elitism of size 1 was employed
to ensure the fittest individual from each generation was
brought forward to the subsequent one. To obtain statisti-
cal significance 50 runs of the program were completed.

2.6.2 Evaluation
Receiver Operating Characteristics (ROC) graphs were

used to assess an individual’s ability to discriminate be-
tween the two classes, with the Area under the ROC Curve
(AUC) used as the fitness function. The data was split into
three groups: the training set; the validation set; and a test
set in the ratio 4:1:1 respectively. The individuals in the

Table 1: Data set splits
All Data Training Validation Test

Controls 37 25 6 6
Patients 45 31 7 7

population had their fitness evaluated on the training set
at each generation, with the fittest individuals being those
most likely to influence the next generation. At each gen-
eration, the fittest individual had their fitness tested on the
validation set to obtain an idea of how well generalised the
classification was. The fittest individual kept at the end of
the run was the best performing individual on the validation
set. After all runs had been completed, the individual that
performed best on the validation set, across all runs, was
re-evaluated on the test set to obtain an unbiased measure
of generality. Finally, the best performing classifier also had
its ability tested all the data together, to provide a measure
of accuracy when confronted with a large data set.

3. RESULTS

3.1 Statistical Measures
The performance of the standard statistical measures in

discriminating between tests taken by controls and Parkin-
son’s Disease patients can be seen in Table 2. While cer-
tain variables are particularly strong, notably mean separa-
tion, the closing acceleration values, and both the opening
and closing speed, others, such as fatigue perform less well.
This indicates that the classifiers still can observe differ-
ences missed by our statistical approach. This demonstrates
that for complex classification tasks, where the underlying
mechanisms which distinguish the two groups are not well
understood, but where there is a lot of available data, an
evolutionary algorithm approach has considerable potential.

3.2 Classifier Results
The results of the genetic program runs were promising,

many classifiers were produced with AUCs of over 0.9. The
classifier taken as the best of the runs, was the genetic pro-
gram whose syntax tree produced the highest accuracy on
the validation set. The structure of this individual is seen
in Figure 3. The floating point values represent fractions
of the input tap data. The values are mostly less than 0.5,
indicating that this particular classifier was generally look-
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Table 2: Discriminatory ability of statistical vari-
ables

Measure AUC
Mean Separation 0.836
Fatigue Separation 0.616
Separation Rhythm 0.836
Mean Speed 0.780
Mean Opening Speed 0.838
Mean Closing Speed 0.848
Mean Opening Acceleration 0.798
Mean Opening Deceleration 0.775
Mean Closing Acceleration 0.819
Mean Closing Deceleration 0.839

Table 3: Classifier performance on the data sets.
Set AUC
Training 0.881
Validation 1.000
Test 0.976
All 0.904

ing at the first half of the tap, at values associated with the
opening of the index finger and thumb.
Table 3 presents the results of this evolved classifier on all

of the four data sets. Due to being selected for its validation
set AUC, it performs well on this set. Its strong classification
ability on the test set data further highlights this classifier’s
ability to generalise to many different data sets. While it
does perform well on the training set, the AUC is not as
high as it might be expected. Generally, classifiers perform
better on the training set than on the test set, the opposite of
this individual. One explanation for this behaviour could be
the small data set sizes used to assess the classifier. As seen
in Table 1, there are only 6 healthy controls and 7 patients
in the validation and test sets. It is possible that these 7
patients happened to be in the later stages of Parkinson’s
Disease and thus displayed more of the characteristic traits
that the classifier can pick up on. Likewise this could mean
that the data sets from patients in the training set were
mostly from patients who did not display many symptoms
and so were harder to classify. This would explain why AUC
on all the data is lower than for the validation and test sets
as well, as the training set data makes up the majority of
all the data. This is a plausible explanation as the median
UPDRS Finger Tapping score was 1 out of 4, indicating a
majority of the Parkinson’s Disease patients completed the
task with only minor impairment. Another factor that could
affect the results, is the fact that the patients were measured
while on medication, which could be assumed to dampen the
bradykinesia characteristics that the classifier locates.
The Receiver Operating Characteristics graphs are shown

in Figure 4. They visually demonstrate the differing perfor-
mance of this classifier on the various data sets.

3.3 Comparison to Previous Classifier
The AUC scores obtained compare favourably to those

calculated by the previous evolved classifier (Table 4). This
demonstrates that using tap separation values as the inputs
to the genetic program results in a classifier that is at least
as discriminatory, if not more so than using windows of data.
The GP classifier performs slightly worse on the data set
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Figure 4: ROC plots.

Table 4: Previously obtained AUC scores
Set AUC
Training 0.912
Validation 0.911
Test 1.000
All 0.918

it has been trained on than the previous CGP classifier.
Possible explanations for this have already been given, with
the main concern being the size of the data sets. The ear-
lier classification work used data sets of the same size as
those used in this study. Over all the data, the two clas-
sifiers achieve similar discriminatory ability, indicating they
both generalise well. The validation and test set scores, how-
ever, demonstrate the inherent problem with using relatively
small data sets. While the new GP classifier has an AUC
of 1.0 on the validation set, it has a lower AUC for the test
set. This is understandable as the individual was selected
by means of its validation set score so it is natural that it
performed well on it and less well on the test set. However,
the prior CGP classifier had almost the same scores but for
the opposite data sets. This is likely due to having data from
only 15 subjects in the validation set and 14 in the test set.
As previously mentioned, this could result in the Parkinson’s
Disease patients represented in the validation set being at an
early stage of the disease, and are thus harder to distinguish
from healthy controls. And the opposite would explain the
perfect discrimination of the test set.

3.4 Classifier Patterns
To gain further insight into the underlying physiological

differences between the motions of Parkinson’s Disease pa-
tients and healthy subjects, the taps that were strongly clas-
sified as belonging to either group were analysed. The 100
taps with the highest, and lowest output values were selected
from the validation set. These represented the taps that
were classified most strongly. Figure 5 shows the separa-
tion values from these taps. The shape of the taps with the
highest output value, indicating strongly healthy motions,
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Figure 5: Plots of the 100 highest (top graph)
and lowest (bottom graph) output values from the
evolved mathematical expression. These represent
the tap shapes most likely to be classed as from a
healthy control and Parkinson’s Disease patient re-
spectively. A darker line indicates a stronger output
value.

shows a single clearly defined peak, which is occasionally
followed by another slightly smaller peak a short time later.
This shape is evident in nearly all of the 100 taps, albeit
at different time scales. The taps from the tests correctly
classified as patients however are drastically different. While
there are a number of taps with low maximum separation
values and a very small negative gradient, the majority fol-
low a consistent tap shape. The graph shows a small initial
local minimum before the separation peak where the index
finger and thumb are at maximum separation. This could
perhaps be indicative of akinesia, whereby Parkinson’s Dis-
ease patients hesitate when initiating movements.

4. CONCLUSIONS
This work presents a novel application of GP to investi-

gate short term patterns of motion in PD patients. It has
shown to be comparable to previous uses of GP to clas-
sify Parkinson’s Disease, and classifies more accurately than
statistical measures of movement. Analysis of the syntax
trees from the highest performing GP classifier could help to
gain an insight into what features of an individual tap mo-
tion help to distinguish Parkinson’s Disease patients from
healthy controls. This would further current understand-
ing of bradykinesia and how it manifests itself in movement
tasks. An initial analysis of the differing separation traces
between Parkinson’s Disease patients and healthy controls
highlights a small separation peak before the main peak that
is evident in the data from patients, but not from controls.
While further analysis is needed, it appears that this could
be due to the akinesia component of bradykinesia. Further-
more, healthy controls demonstrate a second local maximum
of separation, shortly after the main peak. This could prove
to be a useful indicator of normal motor control and the
subject of further investigation.
Since this preliminary study has proved the usefulness of

having tap sequences input into an evolved classifier, there

are several ways to expand on this. A second classifier could
be evolved in parallel, but rather than classifying based on
individual tap sequences, it could instead search for charac-
teristic patterns at a more global level. This could involve
representing the input data as a sequence of values, with
one measure per tap. The variable used to represent each
tap could be something as simple as the mean tap sepa-
ration or a more complex measure. This could be guided
by an analysis of how this current classifier differentiates
data from healthy control subjects to Parkinson’s Disease
patients. As with the previous work into using evolved clas-
sifiers to classify finger tapping data, it might be the case
that acceleration sequences could provide more useful than
separation values.

The results analysis brought up the issue of small data sets
distorting results. To counter this it would be preferable to
obtain more data to increase the sample sizes. Furthermore,
when collecting more data, it would be extremely useful to
assess Parkinson’s Disease patients not exhibiting signs of
medication (termed the ’OFF’ stage). It could be assumed
that these patients would present more noticeable signs of
bradykinesia for a classifier to locate. A final way to improve
the robustness of the results would be to test subjects at
multiple centres in different locations.
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