
Using Supportive Coevolution to Evolve Self-Configuring
Crossover

Nathaniel R. Kamrath
Natural Computation

Laboratory
Department of Computer

Science
Missouri University of Science

and Technology
Rolla, Missouri, U.S.A.
nrkxwb@mst.edu

Brian W. Goldman
BEACON Center for the Study

of Evolution in Action
Department Of Computer
Science and Engineering
Michigan State University

brianwgoldman@acm.org

Daniel R. Tauritz
Natural Computation

Laboratory
Department of Computer

Science
Missouri University of Science

and Technology
Rolla, Missouri, U.S.A.
dtauritz@acm.org

ABSTRACT
Creating an Evolutionary Algorithm (EA) which is capa-
ble of automatically configuring itself and dynamically con-
trolling its parameters is a challenging problem. However,
solving this problem can reduce the amount of manual con-
figuration required to implement an EA, allow the EA to be
more adaptable, and produce better results on a range of
problems without requiring problem specific tuning. Using
Supportive Coevolution (SuCo) to evolve Self-Configuring
Crossover (SCX) combines the automatic configuration tech-
nique of multiple populations from SuCo with the dynamic
crossover operator creation and evolution of SCX.

This paper reports an empirical comparison and analysis
of several different combinations of mutation and crossover
techniques including SuCo and SCX. The Rosenbrock, Ras-
trigin, and Offset Rastrigin benchmark problems were se-
lected for testing purposes. The benefits and drawbacks
of self-adaptation and evolution of SCX are also discussed.
SuCo of mutation step sizes and SCX operators produced
results that were at least as good as previous work, and
some experiments produced results that were significantly
better.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.2.6 [Artificial Intelligence]: Learn-
ing—parameter learning ; I.2.2 [Artificial Intelligence]: Au-
tomatic Programming—program modification, program syn-
thesis

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

Keywords
Coevolution, Dynamic Crossover, Linear Genetic Program-
ming, Parameter Control, Self-Adaptation, Self-Configuration,
Supportive Coevolution

1. INTRODUCTION
The performance of most Evolutionary Algorithms (EAs)

is strongly correlated with the configuration of many pa-
rameters and operators [11]. The optimal configuration of
an EA is typically problem specific and usually requires the
knowledge and skills of an expert to obtain [9]. Further-
more, it is likely that the optimal parameter values and op-
erators change throughout the run of an EA [2]. One solu-
tion to these problems is an EA which can configure itself
and optimally adjust its parameters and operators through-
out its run. This would help reduce the need for an ex-
pert while reducing the need for parameter tuning, giving
the EA the potential to adapt to different problems and
perform well without problem specific tuning. To address
the previously stated issues, this paper introduces a novel
EA which employs Supportive Coevolution (SuCo) to evolve
Self-Configuring Crossover (SCX).

The evolution of SCX by means of SuCo creates an EA
which can benefit from the strengths of both techniques.
SuCo allows for the evolution of parameters and operators
in support populations along with the primary solution pop-
ulation. The support populations supply the primary popu-
lation with the best parameters and operators found at that
point. When SCX is added to SuCo in a support population
of crossover operators, more flexibility is added and the need
for configuration is further ameliorated.

2. BACKGROUND
Previous work has been performed on automatic param-

eter and operator creation and evolution. In [12], the au-
tomatic creation of Genetic Algorithm (GA) mutation op-
erators was discussed. [8] implemented control methods for
all the parameters in an EA. This method was more gen-
erally applicable than less adaptive EAs; however, it could
not achieve the same solution quality as a correctly tuned
EA on specific problems.

Self-adaptation of EA parameters has also previously been
investigated; in [5, 10] the offspring operators were con-

1489

trolled. However, self-adaptation has limitations. When
a suboptimal mutation method randomly creates a single
high quality individual, there is no guarantee that the self-
adapted operator will create another high quality individual.
This individual may have difficulty creating high-quality off-
spring of its own due to its self-adapted genes. Thus, a
method is needed to separate the operator’s fitness from the
individual’s fitness.

2.1 Supportive Coevolution
SuCo is a method of automatic, self configuration which

consists of a primary population, and any number of support
populations [4]. The primary population is the population
of solution candidates that are evaluated by the target fit-
ness function identically to a traditional EA. The support
populations are composed of individuals which represent pa-
rameters and operators. Support populations give SuCo the
ability to separate operator fitness from individual fitness.
All primary and support populations are evolved simulta-
neously, and, when the EA needs operators and parameters
to create new primary individual offspring, a random indi-
vidual from each support population is chosen to create the
offspring.

The evolution of the support individuals throughout a run
gives the EA the ability to configure itself. Based on the
fitnesses of the support individuals, the EA can determine
which parameters and operators are performing best at the
current state of the EA. The support individuals who survive
are then allowed to create offspring and continue the evolu-
tion of their population in an attempt to continue to find
the optimal parameters and operators. As in [4], support
individual fitness assignment is based on two factors: the
fitness difference between parents and child and the genetic
difference between parents and child. Equation 1 defines the
fitness difference between parents and their offspring.

RelativeF itness = offspring − average(parents) (1)

Using the relative fitness improvement between child and
parent fitness as a way to rate the effectiveness of a support
individual should be combined with a way of rewarding ge-
netic diversity between parents and offspring to help prevent
convergence. Doing so reduces the chance of evolving low
risk operators which minimize genetic changes to reduce the
chance of making detrimental changes. Scaling the rela-
tive improvement by the relative distance between parents
and their child encourages genetic exploration. Equation 2
defines the relative distance between parents and their off-
spring.

RelativeDistance =
distance(o, p1) · distance(o, p2)

distance(p1, p2)
(2)

This equation is a simplification for two parent systems of
the equation used in [4]. The distance referred to by Equa-
tion 2 is defined as:

n∑
i=1

(firstGenesi − secondGenesi)2 (3)

where firstGenes are the genes of the first individual and
secondGenes are the genes of the second individual. As-
signing a support individual’s fitness based on the product
of relative fitness and relative distance rewards support in-
dividuals for creating primary offspring which are more fit
and genetically dissimilar to their parents.

SuCo, thus far, has only been used to evolve mutation step
sizes. Mutation step size individuals were represented as lists
of floating point numbers which contained the same number
of genes as a primary individual. Then, when mutation was
performed, each mutation step size gene was used to control
a Gaussian mutation which was added to the corresponding
locus in the primary individual’s genes. SuCo has the po-
tential to evolve more than a single parameter. Since it has
been shown that evolving a parameter with SuCo produces
promising results [4], this paper describes research aimed at
discovering if evolving multiple populations of support indi-
viduals by means of SuCo is a feasible approach to further
automating EA configuration. Additionally, this research
has another novel aspect. As the evolution of an entire oper-
ator through SuCo has yet to be explored, evolving crossover
operators is also a novel extension of previous work.

2.2 Self-Configuring Crossover
With the ability of SuCo to evolve support populations

of parameters and operators, it would be optimal to create
support populations of individuals which are designed to be
easily evolvable and highly expressive. The operator sup-
port individuals should be evolvable by standard EA tech-
niques. With operators, this task is slightly more compli-
cated. [1] employed a Meta-Genetic Program (Meta-GP) to
evolve crossover operators. However, this method is unable
to adapt within an EA run and is extremely computationally
expensive. SCX is a method of automatic crossover creation
and evolution which is computationally feasible and can be
easily evolved by an EA [3].

SCX is encoded employing a linear structure similar to
Linear Genetic Programming (LGP) and composed of a list
of primitive functions. The first primitive function, Swap,
was designed to represent crossovers that move genetic in-
formation between parents and between positions in a sin-
gle parent such as n-point crossover, uniform crossover, and
most permutation based crossovers. The second primitive
function, Merge, was designed to represent crossovers that
create genetic material by combining genes in a manner simi-
lar to arithmetic crossover. Both primitives use three param-
eters. The first two parameters correspond to the gene loca-
tions (in either parent) where the operation will occur. The
final parameter depends on the primitive function. Swap’s
final parameter is a width which determines how many genes
after each gene location should be swapped. This allows for
blocks of consecutive genetic information to remain together.
Merge’s final parameter is a weight. This weight is used to
combine the value at each selected location which is repre-
sented by the first two parameters in the Merge primitive.
Equation 4 shows how Merge combines two values using a
weighted average where g(i) is the gene at the fist position,
g(j) is the gene at the second position, and α is the weight.

g(i) = α · g(i) + (1− α) · g(j) (4)

When using SCX to perform a crossover, the genes of both
parents are first concatenated. Then, the copy of the genes
is modified by applying each primitive in the SCX individual
in sequence. After each primitive has been applied to the
list of genes, half the combined genome is used to create
an offspring. To allow for further dynamic behavior, each
parameter in a primitive can be set in multiple ways. The
first is the Number construct, which uses a static value set
at primitive creation every time the primitive is used. The

1490

second is the Random construct which creates a new random
number every time the primitive is used. The final construct
is the Inline construct. Inline forces the genetic operations
to be performed between the same gene locations in each
parent. See Figure 2 for an example of applying SCX. In
previous work, SCX was evolved using techniques similar to
self-adaptation. This was achieved by giving every primary
solution individual its own crossover operator. Thus, there
was no separate population for the SCX operators.

SCX has several qualities which make it attractive as a
candidate for an operator in SuCo. First, SCX reduces the
search space of crossover operators by using a structure sim-
ilar to LGP and by basing its functionality on primitives.
Since the search space of crossover operators is very large
and the operators need to be evolved within a single run of
the EA, the reduction of search space is vital to the search for
optimal crossover operators. Second, even with the reduced
search space, SCX still has the potential to be extremely
dynamic. Its size, primitive combination, parameters, and
even the way the parameters are defined, are all dynamic
properties of SCX. Lastly, SCX’s structure makes it easy to
evolve using standard EA operations. With these reasons in
mind, and the fact that SCX has shown promising results [3],
SCX has been chosen as the dynamic crossover operator to
be evolved by SuCo in the research presented in this paper.

3. METHODOLOGY

Figure 1: Suco Primary and Support Population In-
teraction

SuCo was implemented with two support populations: one
for mutation step sizes and one for crossover operators as
shown in Figure 1. The mutation step size individuals were
represented using lists of floating point numbers. The crossover
individuals were implemented using SCX. When the EA
starts, each support population is randomly initialized along
with the primary population. After initialization, the cre-
ation of each new individual requests a crossover operator
and a mutation operator from the support populations. The
SCX operator creates an offspring from two parents. Then,
the offspring is mutated by applying the mutation step sizes
from each of the mutation support individual genes to the
offspring genes at the same locus. Support individuals are
chosen randomly and the same support individual combi-
nations are prevented to ensure different combinations of
support individuals are evaluated. Figure 2 demonstrates
the production of offspring using the described method.

Once the new primary individual is created and evaluated,
the support individuals that were requested for its creation
are assigned the product of Equation 1 and Equation 2 as
fitness. This encourages genetic exploration while award-

Figure 2: SCX and Mutation Support Individuals
in Offspring Creation

ing fitness improvements. Each support individual can be
evaluated multiple times to more accurately assess its true
potential to generate quality offspring.

Two adaptations were made in this research; the first to
SuCo and the second to SCX. SuCo had to be adapted to
allow one of its support populations to be configured for
SCX individuals. Since SCX was originally self-adapted as
part of other individuals, it was slightly modified to allow for
evolutionary techniques to be executed on each individual.

The SuCo adaptations were required because a support
population for a crossover operator had not been previously
explored. A similar approach to the mutation step size pop-
ulation was adopted. Individuals were randomly initialized
at the start and given to the primary population when re-
quested by the EA throughout the run. k-tournament se-
lection with replacement was used for parent selection and
without replacement for survivor selection. The mutation
and crossover methods for this support population were han-
dled by standard SCX methodologies as specified in [3].

Since all SCX operators are being evolved in their own
population, a way to perform crossover on two separate pri-
mary individuals with one crossover operator was devised.
The functionality is very similar to the original SCX method.
Both parents’ genes are first copied and concatenated. Then,
all the primitive functions of the SCX support individual are
applied to the copied genes. Once this is complete, half the

1491

Parameter Rastrigin Offset Rastrigin Rosenbrock
A 10 10 100

Genome Size 100 100 50
Evaluations 10,000 100,000 100,000
Population 172 418 (37) 355 (200)
Offspring 5 6 (50) 2

Mutation Rate 0.009838 0.009738 0.213557
Mutation Step 1.47144 0.587874 0.033593

Parent Tournament 114 172 (35) 339 (139)
Survival Tournament 63 421 (27) 344 (190)
Evals Per Generation 9 1 10

Table 1: Experiment parameters used for testing with novel EA parameters in parentheses

genetic material in the resulting list of genes is used to create
an offspring. This is different from the standard SCX imple-
mentation in that it employs a single SCX individual from
a separate population to perform the crossover operation.

Since both crossover and mutation are being evolved, it
can become difficult to determine what to attribute the fit-
ness of an individual to: crossover, mutation, its parents,
or random chance. For many techniques, this is difficult to
determine. However, SuCo explicitly attempts to separate
these factors by normalizing for parent fitness, repeatedly
using the same operator to adjust for noise, and using op-
erators in different combinations to assign operator fitness
independent of the other operators it is paired with. Also,
since SCX is evolving in a support population as opposed
to being self-adapted, there are several potential benefits as
well as several potential disadvantages.

One possible disadvantage is that a crossover operator
may work well with only one specific primary individual
and perform poorly with all other primary individuals. This
could potentially lead to the production of unfit individuals.
However, evolving SCX in a support population allows the
primary population to have access to fit crossover operators
instead of just one crossover operator which it is attached
to as in self-adapted SCX. Another benefit from SuCo of
SCX is it allows the fitness of the operator to be decoupled
from the primary individual’s fitness. Thus, the operator
can receive its own fitness which is indicative of that opera-
tor’s ability to produce quality, genetically diverse offspring.
This allows for better evolution of crossover individuals and
a better SCX operator population from which the primary
population can draw.

4. EXPERIMENTAL SETUP
The main goal of this research is to determine if SuCo is a

feasible way for EAs to perform self-configuration and evolve
their own parameters and operators. Thus, results and anal-
ysis strictly based on fitness are not the only product of these
tests. They will serve as a measure of the potential of SuCo
when employed to evolve multiple support populations as an
indication for future work.

The base settings for the parameters are shown in Table 1.
These parameters were taken from [3] which implemented a
meta-EA to search for optimal parameters. However, some
basic hand tuning for Offset Rastrigin and Rosenbrock was
performed on the EA which evolves both mutation step sizes
and SCX operators since this combination has never been
tested before. This EA’s parameters are shown in parenthe-
ses where different. All EAs used the same parameters for

the Rastrigin problem. Since the goal of this research is to
reduce the amount of parameter setting required by EAs, all
support population parameters were identical to the primary
population’s parameters. Further analysis of the parameters
used is available in Section 6.2.

Several benchmark problems were employed to test per-
formance and produce results for analysis and comparison.
The following test problems were selected to match previous
work and allow for backward comparisons. For a real-valued,
highly multimodal problem with no gene interdependence,
the Rastrigin Function was chosen [6]. The Rastrigin Func-
tion is given in Equation 5:

An+

n∑
i=1

[x2i −Acos(2πxi)] ∀x ∈ [−5.12, 5.12] (5)

The Rosenbrock problem [7], as defined in Equation 6, was
used to represent real-valued problems with gene interde-
pendence.

n∑
i=1

[(1− xi)2 +A(xi+1 − x2i)2] ∀x ∈ [−5, 10] (6)

In both of these problems, the optimum value for each gene
is the same. Thus, the Offset Rastrigin problem, introduced
in [3], was implemented as the final real-valued benchmark
problem to test the EA’s ability to solve problems where not
every gene has the same optimum value. The Offset Ras-
trigin problem is a specially designed modification of the
Rastrigin problem which, at the start of every run, gener-
ates an offset vector O. Every element in O is randomly
assigned a value from [-2.5, 2.5] at intervals of 0.5. In the
Rastrigin function, if xi is a local best, xi + .5 is a local
worst, and if xi is near the global optimum, then xi + 1 will
be near a local optimum. This makes the problem much
harder for SCX since simply swapping a gene which is op-
timal in one position with a gene in another position has a
high probability of resulting in a poor fitness value.

Several combinations of mutation and crossover were im-
plemented for testing. First, a static mutation step size com-
bined with arithmetic crossover (static + arithmetic) was
implemented as a base line. Next, the following combina-
tions were implemented for empirical comparisons: static
mutation step size with self-adapted SCX (static + SA-
SCX), SuCo of mutation step sizes with arithmetic crossover
(SuCo mut + arithmetic), static mutation step size with
SuCo of SCX (static + SuCo SCX), SuCo of mutation step
sizes with self-adapted SCX (SuCo mut + SA-SCX), and
SuCo of both mutation step sizes and SCX (SuCo mut +

1492

Static Mutation SuCo Mutation
Arithmetic -55.925 (6.4379) -61.249 (1.5353)

SA-SCX -0.0072 (0.00465) -0.01711 (0.00690)
SuCo SCX -0.00051 (.00233) -0.00025 (0.00078)

Table 2: Rastrigin Results: mean final best fitness
with standard deviation in parentheses

Static Mutation SuCo Mutation
Arithmetic -0.12568 (0.18911) -0.15197 (0.19091)

SA-SCX -0.02718 (0.01818) -0.02366 (0.01194)
SuCo SCX -0.30794 (0.46271) -0.02579 (0.01022)

Table 3: Offset Rastrigin Results: mean final best
fitness with standard deviation in parentheses

SuCo SCX). These combinations were picked to explore all
possible combinations for static or evolved mutation step
sizes with static, self-adapted, or evolved SCX operators.

Since none of the new techniques have significant asymp-
totic complexities, all experiments rely on counting evalua-
tions as the measure of search efficiency. Experiments with
SuCo count only evaluations of the primary population as
the primary individuals are the only individuals who make
calls to the fitness function. Support individuals are assigned
a fitness value based on the results of the primary individ-
ual’s fitness evaluation which means support individuals do
not need to be directly evaluated.

A complete package containing our results as well as the
source code and configuration files used in testing is available
from our website1.

5. RESULTS
The results comparing the different combinations of muta-

tion step size parameter and crossover operator implemen-
tation are presented in Table 2, Table 3, and Table 4. In
these tables, each column represents the mutation method
used (labelled by the first entry in the column) and each row
represents the crossover method used (labelled by the first
entry in each row). SA-SCX represents self-adapted SCX,
SuCo SCX represents SuCo evolved SCX, and SuCo Mu-
tation represents SuCo evolved mutation step sizes. Each
experiment shows the mean final best fitness and standard
deviation found over 30 runs. A series of Mann-Whitney U
tests were performed comparing the results from SuCo mut
+ SuCo SCX to the results from all other combinations.
SuCo mut + SuCo SCX was found to be the best combi-
nation on the Rastrigin and Rosenbrock problems. On the
Offset Rastrigin problem, there was no statistical difference
between SuCo mut + SuCo SCX and SuCo mut + SA-SCX.
A confidence level of α = 0.01 was used in the statistical
analysis.

6. DISCUSSION
The results from the tests in Section 5 show that the SuCo

mutation + SuCo SCX EA performed well on the Rastrigin
and Rosenbrock problems. This was expected since allowing
SCX to evolve in a support population allows for a better
evaluation of SCX operators and gives the primary popula-
tion access to higher quality crossover operators. However,

1https://github.com/natekamrath/SuCo-SCX

Static Mutation SuCo Mutation
Arithmetic -71.873 (39.489) -85.468 (41.840)

SA-SCX -28.999 (22.847) -24.444 (23.446)
SuCo SCX -22.638 (23.201) -17.941 (22.824)

Table 4: Rosenbrock Results: mean final best fitness
with standard deviation in parentheses

Figure 3: Fitness vs Evals for Different Numbers of
Evaluations per Generation - 100,000 Evals

it is interesting that the SuCo mutation + SuCo SCX EA
did not perform as well on the Offset Rastrigin problem.
This could be because of its increased complexity which is
difficult for SCX to overcome since different genes have dif-
ferent optimum values and there is no gene interdependence.
Further explanation is provided in the following sections.

It is also interesting to note that one evaluation per gener-
ation was used for the Offset Rastrigin problem. Normally,
allowing for multiple evaluations per generation helps to de-
termine the true quality of support individuals. This allows
them to be evaluated in different combinations and with
different primary individual parents to ensure that one bad
combination does not cause a potentially fit support individ-
ual to be removed from the support population. However,
it was found that performing one evaluation per generation
was more beneficial on the Offset Rastrigin problem. In or-
der to determine why, data from the Offset Rastrigin prob-
lem was further analyzed.

6.1 Evolution Versus Self Adaptation of SCX
Figure 3 shows mean best fitness versus the number of

evaluations for the last 10,000 evaluations of several 100,000
evaluation runs. These values were obtained by averaging
values from the Offset Rastrigin problem over fifty runs for
each different setting shown. The higher number of eval-
uations per generation produces large, sudden increases in
fitness followed by periods of small improvement. The in-
creases in fitness are more extreme than the graph may de-
pict as the results are smoothed. The described changes in
value indicate that either multiple runs all improve at iden-
tical evaluation numbers, or individual runs increased dra-

1493

https://github.com/natekamrath/SuCo-SCX

Figure 4: Fitness vs Evals for Different Numbers of
Evaluations per Generation - 300,000 Evals

matically. As the number of evaluations per generation be-
comes smaller, the sudden increases in fitness happen more
often, but have a smaller magnitude in change. As a re-
sult, support individuals are evolved more quickly and can
adapt to the changing primary individuals faster. This cre-
ates the more constant, consistent fitness improvement curve
observed with small numbers of evaluations per generation.

When observing the increase in fitness of the higher num-
ber of evaluations per generation, it would appear as though
it would surpass the smaller number of evaluations per gen-
eration given more evaluations. However, Figure 4 shows
the last 30,000 evaluations of a run which was allowed to
continue to 300,000 evaluations. The data for Figure 4 was
collected in the same way as the data for Figure 3, but with
only 10 runs per experiment and the number of evaluations
parameter varied. It is easy to see that the higher num-
ber of evaluations per generation still has not surpassed the
lower evaluations per generation. This is because the large
increases in fitness following an evolutionary cycle of the sup-
port populations become increasingly smaller and the period
between evolutionary cycles of the support populations also
yields significantly less improvements in fitness as the EA
progresses.

As shown in Figure 3 and Figure 4, it was found that al-
lowing for multiple evaluations per generation through SuCo
mut + SA-SCX yielded only marginally different results
from static + SA-SCX. It was also observed that SuCo mut
+ SA-SCX performed better than SuCo mut + SuCo SCX
when using the same parameters and multiple evaluations
per generation. However, when only one evaluation per gen-
eration was used, SuCo mut + SuCo SCX performance im-
proved. This can be attributed to the fact that self-adapting
SCX always uses one evaluation per generation. SCX is
never explicitly evaluated when being self-adapted because
each operator belongs to a solution individual. Since each so-
lution individual is only evaluated once per generation, each
SCX operator is as well. When being evolved and evalu-
ated multiple times per generation, it takes more evaluations
to produce the same number of new support individuals as

Figure 5: Fitness vs Evals for Different SuCo mut +
SuCo SCX Population Sizes - 100,000 Evals

compared to self-adaptation. On a more complex problem,
such as Offset Rastrigin, it may be easier to determine which
SCX operators are more fit. Thus, one evaluation per gen-
eration of each support individual is sufficient to accurately
determine the fitness of that support individual. It is also
possible that one evaluation per generation allows the sup-
port individuals to evolve more quickly and continue to sup-
ply the primary population with new SCX operators. Both
explanations could be reasons why SuCo performed better
when performing only a single evaluation of each support
individual per generation on Offset Rastrigin.

This demonstrates one of the benefits of using SuCo to
evolve SCX in a support population as opposed to self-
adapting SCX. On problems where complexity requires many
evolutionary cycles to produce crossover operators which
are highly developed, evolving SCX can mimic self-adapting
SCX, in both behavior and performance, by adjusting the
evaluations per generation. This can be seen in Figure 3
where the results from one evaluation per generation are
very similar to the results from self-adaptation. However,
on simple problems where the complexity is not necessary,
evolved SCX operators can be evaluated multiple times per
generation to truly assess the quality of more simplistic op-
erators and produce more fit individuals. This is evident
in the Rosenbrock results presented in Table 4, and even
more evident in the Rastrigin results presented in Table 2.
Clearly, evolving SCX operators in support populations in-
creases the adaptability of an EA and allows it to perform
more optimally over a wider range of problems.

6.2 Population Size when Evolving Multiple
Support Populations

Another interesting result of evolving multiple support
populations is observed when considering the population
sizes used on the Offset Rastrigin and Rosenbrock problems.
When SuCo was used to evolve both mutation step sizes and
SCX operators, a smaller population size produced better re-
sults. This could partially be due to the ability of SuCo to
produce high quality individuals from limited genetic mate-
rial and the potential of SuCo to explore genetically. Since

1494

Figure 6: Fitness vs Evals for Different SuCo mut +
SuCo SCX Offspring Sizes - 100,000 Evals

the parameters and operators are evolving to allow for a bet-
ter search of the primary individual search space, less unique
genetic material is needed in the primary population. The
evolved parameters and operators can find new genetic ma-
terial more easily which means unique genetic material does
not have to be retained by individuals in the primary popu-
lation. This was demonstrated by the configuration settings
for the SuCo EA which evolved both mutation step sizes and
SCX operators. Figure 5 shows the last 10,000 evaluations
of several 100,000 evaluation runs where different popula-
tion sizes were implemented. Each different population size
experiment was performed fifty times and then averaged to
produce the data shown in Figure 5.

Also, a higher number of offspring produced in each gen-
eration was preferred. This could be caused by the previ-
ously discussed effect which allows evolved parameters and
operators to find new genetic material more easily. Another
contributing factor could be that, since support individuals
are encouraged to create genetic diversity, gene saturation
induced by the large number of offspring produced is pre-
vented. Figure 6 shows the last 10,000 evaluations of several
100,000 evaluation runs where different offspring sizes were
implemented. The data for Figure 6 was collected in the
same way as the data for Figure 5 with only the offspring
size parameter being varied.

Another possible explanation for the small population size
is the fact that the support populations all used parame-
ters identical to the primary population. This method of
setting parameters may not be optimal. The parameters
observed could simply be the best parameters when consid-
ering all populations as a whole. If the support populations
were each configured separately, different parameters may
be found to be more optimal. This could also increase per-
formance as the optimal configurations for each population
could be found.

7. CONCLUSION
Proper EA configuration is a challenging task which of-

ten requires the experience of an expert. However, there are
methods which allow an EA to configure itself optimally.
An even more challenging problem is allowing an EA to re-

configure its parameters throughout its run. This ability
allows the EA to adapt its parameters and operators in an
attempt to find optimal settings. SuCo and SCX are both
methods which allow for EA self-configuration and dynamic
parameter control.

To build on previous work and determine if adding more
parameters and operators to support populations in SuCo
is beneficial, a new support population composed of SCX
individuals was introduced to SuCo. It was determined that
evolving SCX through SuCo as opposed to self-adaptation
can further add flexibility to the EA. This is due to the fact
that evolved SCX can operate in a mode functionally simi-
lar to self-adaptation or completely different depending on
what is more optimal for the current problem. SuCo was
shown to be not only a feasible way of evolving multiple pa-
rameters and operators, but also a promising way of doing
so. Using SuCo to evolve multiple populations of parame-
ters and operators has the potential to further reduce EA
configuration needs, allow for dynamic parameter control,
and produce high quality results.

8. FUTURE WORK
While the results shown here are promising, there is still

a large amount of work which needs to be done. More re-
search needs to be performed on the effects of adding addi-
tional parameters and operators to SuCo in support popu-
lations. Operators which are suitable for SuCo need to be
empirically compared in order to determine which work well
as support individuals. New methods of operator evolution
may need to be investigated to create methods which lend
themselves to being evolved in support populations. Meth-
ods to dynamically control population size also need to be
researched. Automated methods for setting support popu-
lation parameters and evaluations per generation need to be
explored. The way fitness values are assigned to support in-
dividuals also needs more work. The empirical comparison
of self-adaptation and evolution of SCX operators needs to
be expanded on to further explain the benefits and draw-
backs of each.

On a larger scale, SuCo needs to be compared to other
methods of automatic configuration and dynamic parame-
ter control. Performance on real-world problems needs to
be studied and parameter sensitivity also needs further re-
search.

9. REFERENCES
[1] L. Dioşan and M. Oltean. Evolving crossover

operators for function optimization. In Proceedings of
the 9th European Conference on Genetic
Programming, volume 3905 of Lecture Notes in
Computer Science, pages 97–108, Budapest, Hungary,
10 - 12 Apr. 2006. Springer.

[2] B. W. Goldman and D. R. Tauritz. Meta-Evolved
Empirical Evidence of the Effectiveness of Dynamic
Parameters. In Proceedings of the 13th Annual
Conference Companion on Genetic and Evolutionary
Computation (GECCO ’11), pages 155–156, Dublin,
Ireland, July 2011.

[3] B. W. Goldman and D. R. Tauritz. Self-Configuring
Crossover. In Proceedings of the 13th Annual
Conference Companion on Genetic and Evolutionary
Computation (GECCO ’11), pages 575–582, Dublin,
Ireland, July 2011.

1495

[4] B. W. Goldman and D. R. Tauritz. Supportive
Coevolution. In Proceedings of the 14th Annual
Conference Companion on Genetic and Evolutionary
Computation (GECCO ’12), pages 59–66,
Philadelphia, Pennsylvania, USA, July 2012.

[5] J. Gomez. Self Adaptation of Operator Rates in
Evolutionary Algorithms. In Proceedings of the 2004
IEEE Congress on Evolutionary Computation (CEC
’04), pages 1720–1726, Portland, Oregon, USA, 20-23
June 2004. IEEE Press.

[6] D. S. H. Mühlenbein and J. Born. The Parallel
Genetic Algorithm as Function Optimizer. Parallel
Computing, 17(6–7):619–632, Sept. 1991.

[7] K. A. D. Jong. An Analysis of the Behavior of a Class
of Genetic Adaptive Systems. PhD thesis, University
of Michigan, 1975.

[8] G. Papa. Parameter-less Evolutionary Search. In
Proceedings of the 10th Annual Conference on Genetic
and Evolutionary Computation (GECCO ’08), pages
1133–1134, Atlanta, Georgia, USA, 12-16 July 2008.
ACM.

[9] E. A. Smorodkina and D. R. Tauritz. Toward
Automating EA Configuration: the Parent Selection
State. In Proceedings of the 2007 IEEE Congress on
Evolutionary Computation (CEC’07), pages 63–70,
Singapore, Sept. 2007.

[10] F. Vafaee, W. Xiao, P. C. Nelson, and C. Zhou.
Adaptively evolving probabilities of genetic operators.
In Proceedings of the 7th International Conference on
Machine Learning and Applications (ICMLA ’08),
pages 292–299, La Jolla, San Diego, USA, 11-13 Dec.
2008. IEEE.

[11] A. E. W. de Landgraaf and V. Nannen. Parameter
Calibration Using Meta-Algorithms. In Proceedings of
the 2007 IEEE Congress on Evolutionary Computation
(CEC’07), pages 71–78, Singapore, Sept. 2007.

[12] J. R. Woodward and J. Swan. The Automatic
Generation of Mutation Operators for Genetic
Algorithms. In Proceedings of the 14th Annual
Conference Companion on Genetic and Evolutionary
Computation (GECCO ’12), pages 67–74,
Philadelphia, Pennsylvania, USA, July 2012. ACM.

1496

	Introduction
	Background
	Supportive Coevolution
	Self-Configuring Crossover

	Methodology
	Experimental Setup
	Results
	Discussion
	Evolution Versus Self Adaptation of SCX
	Population Size when Evolving Multiple Support Populations

	Conclusion
	Future Work
	References

