
Evolving Black-Box Search Algorithms Employing Genetic
Programming

Matthew A. Martin
Natural Computation Laboratory

Department of Computer Science
Missouri University of Science and Technology

Rolla, Missouri, U.S.A.
mam446@mst.edu

Daniel R. Tauritz
Natural Computation Laboratory

Department of Computer Science
Missouri University of Science and Technology

Rolla, Missouri, U.S.A.
dtauritz@acm.org

ABSTRACT
Restricting the class of problems we want to perform well
on allows Black Box Search Algorithms (BBSAs) specifi-
cally tailored to that class to significantly outperform more
general purpose problem solvers. However, the fields that
encompass BBSAs, including Evolutionary Computing, are
mostly focused on improving algorithm performance over
increasingly diversified problem classes. By definition, the
payoff for designing a high quality general purpose solver
is far larger in terms of the number of problems it can ad-
dress, than a specialized BBSA. This paper introduces a
novel approach to creating tailored BBSAs through auto-
mated design employing genetic programming. An exper-
iment is reported which demonstrates its ability to create
novel BBSAs which outperform established BBSAs includ-
ing canonical evolutionary algorithms.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.2.2 [Artificial Intelligence]: Au-
tomatic Programming–program modification, program syn-
thesis

General Terms
Algorithms, Design

Keywords
Black-Box Search Algorithms, Evolutionary Algorithms, Ge-
netic Programming

1. INTRODUCTION
An interpretation of the No Free Lunch (NFL) Theorem

is that all non-repeating Black Box Search Algorithms (BB-
SAs) have the same average performance over all optimiza-
tion problems [15]. This dooms the quest for a BBSA supe-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

rior to all other BBSAs on all problems. However, restrict-
ing the class of problems we want to perform well on allows
BBSAs specifically tailored to that class to significantly out-
perform more general purpose problem solvers. In contrast,
the fields that encompass BBSAs, including Evolutionary
Computing, are mostly focused on improving algorithm per-
formance over increasingly diversified problem classes. By
definition, the payoff for designing a high quality general
purpose solver is far larger in terms of the number of prob-
lems it can address, than a specialized BBSA.

This paper introduces a novel approach to creating BBSAs
through automated design employing genetic programming.
It furthermore demonstrates that there are problem classes
for which this approach generates BBSAs which significantly
outperform established BBSAs including canonical Evolu-
tionary Algorithms (EAs). While there have been previous
attempts to automate the design of algorithms in terms of
evolving operators and automating the selection of prede-
fined operators, this work makes the next logical step and
automates the design of algorithm structure. The proof of
concept presented in this paper employs a limited set of rel-
atively complex primitives extracted from existing canonical
BBSAs for which experimental results are presented on the
classic Deceptive Trap problem and compared to the perfor-
mance of a steepest-ascent hill-climber and a canonical EA.
A few selected evolved BBSAs demonstrating the abilities
and drawbacks of this method are presented and analyzed.

2. RELATED WORK
Most previous work on employing evolutionary comput-

ing to create improved BBSAs, focused on tuning parame-
ters [13] or adaptively selecting which of a pre-defined set
of operators to use and in which order [12]. The latter em-
ployed Multi Expression Programming to evolve how, and
in what order, the EA used selection, mutation, and recom-
bination. This approach used four high level operations:
Initialize, Select, Crossover, and Mutate. These operations
were combined in various ways to evolve a better perform-
ing EA. Later this approach was also attempted employing
Linear Genetic Programming (LGP) [4, 5, 11]. While this
allowed the EA to identify the best combination of available
selection, recombination, and mutation operators to use for
a given problem, it was limited to a predefined structure.

A more recent approach to evolve BBSAs employed Gram-
matical Evolution (GE) [10] which uses a grammar to de-
scribe structure, but highly constrained to the standard EA
model. No significant increase in result quality was reported.

1497

Genetic Programming (GP) introduced the concept of
evolving executable programs [9]. The first attempts at ap-
plying GP to the generation of BBSAs was to evolve indi-
vidual EA operators. The primary effort has been to create
improved EA variation operators [1, 6, 8, 17]. Some limited
work has been done on evolving EA selection operators [14,
16]. Thus far the focus has been on evolving EA operators,
rather than entire BBSAs of indiscrimate type. This paper
takes the next logical step, namely evolving the structure
of BBSAs to create novel and unexpected types of BBSAs.

3. METHODOLOGY
The specific focus of the research reported in this paper is

to evolve BBSAs tailored to a specific problem class which
can significantly outperform more general purpose BBSAs.
GP was employed where fitness was based on the perfor-
mance of an evolved BBSA with efficiency as tie-breaker.

3.1 Parse Tree
Instead of representing the entirety of an algorithm within

a parse tree, the representation is a single iteration of a
BBSA. A parse tree is used to represent the iteration for the
evolutionary process such that standard GP operators will
work effectively. The parse tree is evaluated in a pre-order
fashion. Each non-terminal node will take one or more sets
of solutions (including the empty set or a singleton set) from
its child node(s), perform an operation on the set(s) and then
return a set of solutions. The set that the root node returns
will be stored as the ‘Last’ set which can be accessed in
future iterations to facilitate population-based BBSAs. An
example of a randomly generated BBSA represented as a
parse tree is shown in Figure 1.

The terminal nodes are sets of solutions. These sets in-
clude the ‘Last’ set, as well as auxiliary sets which will be ex-
plained in Section 3.1.4. The non-terminal nodes that com-
pose these trees are operations extracted from pre-existing
algorithms. The nodes are broken down into selection nodes,
variation nodes, set operation nodes, and other utility nodes.
The following subsections describe the node type instances
employed in the experiments reported in this paper.

3.1.1 Selection Operation Nodes
Two principal selection operations were employed in the

experiments. The first of these is k-tournament selection
with replacement. This node has two parameters, namely
k and the number of solutions selected, the second is count
which designates the number of solutions passed to the next
node. The second selection operation employed is truncation
selection. This operator takes the n best solutions from the
set passed in, n being one of its parameters.

3.1.2 Variation Operation Nodes
For the experiments, four variation operations were used.

The first variation operation is the standard binary uniform
crossover for multiple parents. This variation operation re-
turns n solutions, n being a parameter of the node. The sec-
ond and third variation operations are the standard bit-flip
mutation. The only difference between these two operations
is that one creates a copy of each solution and then applies
the mutation, while the other alters the solutions that were
passed in. The last variation operator is diagonal crossover
with multiple parents [7] which returns the same number of
solutions as were passed in. This variation node has one pa-

Figure 1: Example Parse Tree

initialize population
evaluate initial population
A = []
while termination condition not met do

X = kTournament(Last, k = 5,count =30)
A = X
Y = kTournament(A,k = 10, count = 15)
Y = uniformRecombination(Y, count = 15)
Z = X+Y
Z = mutate(Z, rate = 5%)
evaluate(Z)
Last = truncate(Z, 24)

end while
evaluate(Last)

Figure 2: Example Parse Tree Generated Code

1498

rameter, n, which determines the number of points employed
by crossover.

All the experiments reported in this paper are on binary
problems, thus the use of binary variation operators. How-
ever, this is not a general restriction and representation ap-
propriate variation operators may be employed.

3.1.3 Set Operation Nodes
The experiments reported in this paper employed two dis-

tinct set operations. The first is the union operation named
“Add Set”. This node takes two sets of solutions and returns
the union of the sets passed into it. The other operation is
the save operation called “Make Set”. This operation saves a
copy of the set passed into it. This set can be used elsewhere
in the algorithm as explained in Section 3.1.4.

3.1.4 Other Nodes
The last type of non-terminal node employed in this pa-

per is the evaluation node. This node evaluates all of the
solutions that are passed into it. Another option considered
was, instead of having an evaluation node, to evaluate the
solutions that were returned from the root node. This option
was not selected to allow for more freedom in the structure
of the algorithm.

The terminal nodes in this representation were sets of so-
lutions. These sets could either be the ‘Last’ set returned
by the previous iteration or a set that was created by the
save operation. These saved sets persist from iteration to
iteration such that if a set is referenced before it has been
saved in a given iteration, it will use the save from the last
iteration. At the beginning of each run, these sets are set to
the empty set.

3.2 Meta-Algorithm
A customized GP was employed to meta-evolve the BB-

SAs. The two primary variation operators employed were
the standard sub-tree crossover and sub-tree mutation. An
alteration to the standard sub-tree mutation was made. The
maximum number of nodes being added in this mutation is
from 1 to a user defined value. Another mutation opera-
tion was added to this algorithm that selects a random node
from the parse-tree and randomizes the parameters if it has
any. To ensure that the GP has a good initial population,
when creating the initial population each BBSA must have
a non-zero fitness value. This discards the BBSAs that do
not evaluate any solutions that they are given.

3.2.1 Black-Box Search Algorithm
Each individual in the GP’s population is a BBSA. To

evaluate the fitness of an individual, its encoded BBSA is
run for a user-defined number of times. Each run of the
BBSA begins with the population initialization and the eval-
uation of the initial population. The size of the population
is evolved along with the structure of the algorithm. Then
the parse-tree is evaluated until one of the termination cri-
teria are met. Once a run of the BBSA is completed, the
‘Last’ set is evaluated to ensure that the final fitness value is
representative of the final population. Logging is performed
during these runs to track when the BBSA converged and
what the converged solution quality is.

The fitness of a BBSA is primarily determined by the
fitness function that it employs to evaluate the solutions it
evolves. In addition to this, parsimony pressure is added

to ensure that the parse trees do not get too large. The
parsimony pressure is calculated by multiplying the number
of nodes in a tree by a user defined value. The parsimony
pressure is subtracted from the best solution in the final
population averaged over all runs to get the fitness of the
BBSA. When comparing two BBSAs, in case of equal fitness,
convergence time is employed as a tie-breaker.

The evaluation of the BBSAs is the computational bot-
tleneck for this approach. Thus, to minimize time wasted
on poor solutions, a partial evaluation is supported to al-
low terminating poor solutions before they are fully evalu-
ated. This is accomplished by applying four limiting factors.
First of all, there is a maximum number of evaluations that
a BBSA may perform during each run. If a BBSA exceeds
that number, then it will automatically terminate mid-run.
Secondly, there is a maximum number of iterations that the
BBSA may perform before it will halt. This addition of
an iteration limit adds pressure to the GP to evolve algo-
rithms with more evaluations per iteration. If this iteration
limit were not put in place, it would take BBSAs with very
low evaluations per iteration much longer to be evaluated.
Thirdly, the algorithm counts the relative number of oper-
ations performed. Each node represents an operation, and
these operations can take a significant amount of time to
execute. A weight is associated with each node that repre-
sents an estimation of how many operations that node takes
per input solution. Once a node is executed, that weight
is added to a running total of the operations for that run.
Once the limit is reached, the run will end. This is to en-
sure that algorithms whose computational time complexity
is dominated by operations rather than evaluations are ter-
minated based on those operations. The fourth method is
by convergence. If an algorithm has not improved in i iter-
ations, then the run will end. If the operation limit or the
evaluation limit are reached mid-way through an iteration,
then the rest of that iteration is not run.

3.2.2 External Verification
To ensure that the performance of the evolved BBSA is

accurate, code is generated to represent the parse tree. This
is done to externally verify that the performance that the
GP shows for a given BBSA is accurate when actually imple-
mented. An example of a parse tree and the code generated
is shown in Figure 1 and Figure 2. This verification was
employed for the testing of the BBSAs in all experiments.

4. EXPERIMENTS
To demonstrate the proposed approach’s ability to cre-

ate novel, high-performance BBSAs, it was run on a se-
lected problem class and compared with established BB-
SAs. For the selected problem class, the BBSAs are evolved
with a given problem configuration. Once a BBSA has been
evolved, it is run on different problem configurations to de-
termine if the solution is a good solver for the generalized
problem class. The evolved BBSAs are compared against a
standard EA and a Steepest Ascent Hill-Climber. To ensure
that the human bias of implementing an algorithm would
not sway the results of the experiments, the EA was pro-
duced by the same external verification method described
earlier. The EA was encoded with the parse tree shown
in Figure 3 which generated the code shown in Figure 4.
The parameter values for this algorithm were found using
GP’s Alternate Mutation for 2000 evaluations which is the

1499

Figure 3: Example EA Parse Tree

initialize population
evaluate initial population
while termination condition not met do

Y = kTournamentLast(k = 16, count = 4)
Y = uniformRecombination(Y, count = 16)
Z = mutate(Z, rate = 6.3%)
evaluate(Z)
Z = Z+Last
Last = truncate(Z, 20)

end while

Figure 4: EA Parse Tree Generated Code

Bit-Length Trap Size
100 5
200 5
105 7
210 7

Table 1: Problem Configurations for Deceptive Trap

maximum amount of parameter tuning that a BBSA could
have during the experiments. The Hill-Climber could not be
perfectly reproduced with the currently implemented nodes.
Thus, this code had to be generated manually for the tests.

The classic Deceptive Trap problem [2] is employed as
benchmark. It divides a bit-string into traps of size j bits
each which are scored by using the following equation where
t is equal to the sum of the bit values in the trap.

trap(t) =

{
j − 1 − t (t < j)

j (t = j)

The BBSAs were evolved with a bit-length of 100 and
a trap size of 5. For the evolved BBSAs, code was gener-
ated using the external verification method described earlier.
This generated code was run on the problem configurations
shown in Table 1. This is done to determine if the evolved
algorithm is a general solver for the problem class.

For these experiments, fifteen BBSAs were evolved. Dur-
ing the evolution process, each BBSA was run five times.
The external verification method was used to generate code
for data-gathering. Each of the evolved BBSAs was run 30
times for each of the problem configurations. Each of the
algorithms was run for 50,000 evaluations. Then the results
were compared with an EA and a Hill-Climber, each run 30
times with the same problem configurations.

Both the meta-GP and the BBSA generator have many
parameters that can be tuned to optimize performance. The
research reported in this paper utilized manual tuning; more
rigorous tuning in the future may be expected to improve
results. All of the experiments were conducted under the
same settings. The GP was run for 2000 evaluations. The
initial population was 50 individuals and each generation 20
new individuals are created. k-tournament selection with
k = 15 was employed for parent selection. All of the recom-
bination and mutation operations have an equal chance of
being used. The parsimony pressure for the tree size was
set to .001 per node. The maximum number of iterations
the BBSAs can use is 500000 and the maximum number of
iterations is 10000. All the parameter settings for the GP
are summarized in Table 2.

For the generation of the BBSAs, heuristic constraints
were employed to limit various parameters to reasonable val-
ues. The maximum number of individuals selected in selec-
tion nodes was set to 25. The maximum initial population
was set to 50 individuals. The maximum k value used for
k-tournament is 25. The maximum number of points for di-
agonal crossover is 10 points. All the parameter settings for
the BBSA are summarized in Table 3.

A complete package of our data as well as the source code
employed in testing is available from our website1.

1https://github.com/mam446/EvoBBSA

1500

Figure 5: BBSA1 evolved for Deceptive Trap in
parse tree form. Initial population of 49 solutions

Figure 6: BBSA2 evolved for Deceptive Trap in
parse tree form. Initial population of 29 solutions

Figure 7: BBSA3 evolved for Deceptive Trap in
parse tree form. Initial population of 39 solutions

Parameter Value
Evaluations 2000

Initial Population 50
Children per Generation 20

k-Tournament 15
Sub-Tree Crossover Probability 33%
Sub-Tree Mutation Probability 33%
Alternate Mutation Probability 33%

Alternate Mutation Depth 5
Parsimony Pressure 0.001

Maximum Operations 500,000
Maximum Iterations 10,000

Table 2: GP Configurations

Parameter Value
Evolution Runs 5

Evaluations 50,000
Maximum k Value 25

Maximum Number of Selected Individuals 25
Maximum Initial Population 50
Maximum Crossover Points 10

Table 3: Black-Box Search Algorithm Settings

5. RESULTS
Three algorithms were selected from the fifteen evolved

algorithms to discuss in more detail. They were selected be-
cause they have features that help characterize the strengths
and weaknesses of the proposed approach. The three algo-
rithms have a very different structure from each other and
versus existing canonical BBSAs. The structure of the algo-
rithms is presented in figures 5-7. The algorithms are labeled
BBSA1, BBSA2, and BBSA3, respectively.

Comparisons of the evolved BBSAs and the EA can be
seen in figures 8-11. These graphs are the averages of the
30 runs that were performed for the statistical tests. For all
of these tests the algorithms were evolved on the problem
configuration of a bit-length of 100 and a trap size of 5, and
were run on the problem configurations shown in Table 1.

A summary of the final states of the various BBSAs can
be found in Table 4 which shows the results for each BBSA
and problem configuration combinations averaged over all
runs along with the standard deviation.

To determine statistically if the evolved BBSAs performed
better than the EA and the Hill-Climber, a two-tailed t-test
was used. The results of these tests are presented in tables 5-
10. In the results column of these tables, a + indicates that
the BBSA performed better than the EA/Hill-Climber. A -
indicates that the BBSA performed worse than the EA/Hill-
Climber. A ∼ indicates that there is no statistical difference
between the algorithms. A summary of the t-test run on all
of the BBSAs can be found in Table 11.

6. DISCUSSION
On the problem configuration for which the BBSAs were

evolved, the quality of the solutions found was better than
the EA and the Hill-Climber. However, on the other prob-
lem configurations the results were generally not as good.

1501

Figure 8: Comparison of an EA, Hill-Climber,
and the BBSAs evolved with bit-length=100 and
trap size=5 and evaluated on bit-length=100 and
trap size=5

Figure 9: Comparison of an EA, Hill-Climber,
and the BBSAs evolved with bit-length=100 and
trap size=5 and evaluated on bit-length=200 and
trap size = 5

Figure 10: Comparison of an EA, Hill-Climber,
and the BBSAs evolved with bit-length=100 and
trap size=5 and evaluated on bit-length=105 and
trap size = 7

Figure 11: Comparison of an EA, Hill-Climber,
and the BBSAs evolved with bit-length=100 and
trap size=5 and evaluated on bit-length=210 and
trap size = 7

Bit-Length Trap Size EA Hill-Climber BBSA1 BBSA2 BBSA3
100 5 0.836 (0.0245) 0.834 (0.0145) 0.872 (0.0236) 0.976 (0.0102) 0.881 (0.0275)
200 5 0.789 (0.0249) 0.839 (0.0108) 0.795 (0.0273) 0.945 (0.00990) 0.826 (0.0178)
105 7 0.862 (0.0277) 0.858 (0.00884) 0.858 (0.0149) 0.986 (0.00841) 0.864 (0.0195)
210 7 0.818 (0.0208) 0.863 (0.00517) 0.791 (0.0219) 0.915 (0.0195) 0.810 (0.0218)

Table 4: Final results of all tests averaged over 30 runs with standard deviation

1502

The algorithms BBSA1 and BBSA3 performed no better
than the EA and the Hill-Climber. It appears as though
these BBSAs over-specialized to the problem configuration
they were evolved on.

BBSA2, however, performed better than all other algo-
rithms on all problem configurations. Its only noticeable
drawback is its relatively slow convergence. This BBSA
shows that it is possible to evolve generic solvers that can
perform very well on a problem class regardless of problem
configuration.

In all experiments, the EA converges more quickly than
the evolved BBSA; the Hill-Climber converges more quickly
than two of the three evolved BBSAs. This is primarily
due to the speed at which the evolved algorithms converge
being secondary to solution quality. This problem might be
avoided by using Multi-Objective GP which would allow the
user to select the trade-off between speed and quality that
best suits their needs.

The BBSAs that were evolved for this problem preferred
to use diagonal recombination rather than uniform recom-
bination. This is primarily due to how the problem was
represented. Each trap was in a continuous part of the bit-
string and thus, it would be more beneficial for those parts
to be kept together to ensure the integrity of the already
solved traps.

This experiment also confirmed an observation from the
preliminary experiments that there is redundancy in the
structure of the algorithm. An example of this can be seen
in BBSA3. On the right side of the tree the ‘Last’ set is
added to itself which yields the ‘Last’ set. This add opera-
tion could be replaced by the ‘Last’ set and would behave
in the same way. Other examples of this were when a set
would be evaluated multiple times without being altered. In
this case one of the evaluations could be removed without
changing how the BBSA performed. Some of these redun-
dancies are very difficult to remove with the standard GP
recombination and mutation operations. One way to fix this
would be a pruning method that would intelligently remove
redundant nodes in the tree.

From analysis of the populations of the failing runs, the
failure was most likely due to a problem with diversity of
the population. Upon examination of the runs in which
they did succeed in finding good solutions, this problem of
diversity still existed. Once the GP is made multi-objective,
this problem with diversity might be fixed by employing the
crowding distance metric of NSGA-II [3] by determining how
similar the structure of the BBSAs are.

Table 11 shows that nine of the fifteen BBSAs performed
better than both the EA and Hill-Climber. The remaining
six algorithms performed worse than both the EA and Hill-
Climber. This demonstrates that this approach not only
has the ability to create well performing algorithms, but
can create them more consistently than previous methods.

7. CONCLUSIONS
In this paper it was shown that using GP it is possible to

evolve BBSAs that can beat canonical BBSAs for a given
problem class. Though many of the primitives were ex-
tracted from these canonical BBSAs, the resulting BBSAs
bear little resemblance to them.

One problem with the current method is that the algo-
rithms can become over-specialized if the problem class can
have multiple problem configurations. In the case of BBSA1

Bit-Length Trap Size Result p-Value
100 5 + 6.69 E-9
200 5 ∼ 0.141
105 7 ∼ 0.145
210 7 - 2.91 E-8

Table 5: T-Test results for evolved BBSA1 and EA
with α=0.05

Bit-Length Trap Size Result p-Value
100 5 + 1.2 E-9
200 5 - 4.23 E-11
105 7 ∼ 0.844
210 7 - 1.23 E-15

Table 6: T-Test results for evolved BBSA1 and Hill-
Climber with α=0.05

Bit-Length Trap Size Result p-Value
100 5 + 1.35 E-42
200 5 + 1.38 E-56
105 7 + 6.16 E-52
210 7 + 2.27 E-25

Table 7: T-Test results for evolved BBSA2 and EA
with α=0.05

Bit-Length Trap Size Result p-Value
100 5 + 1.58 E-42
200 5 + 2.91 E-43
105 7 + 1.61 E-52
210 7 + 2.97 E-15

Table 8: T-Test results for evolved BBSA2 and Hill-
Climber with α=0.05

Bit-Length Trap Size Result p-Value
100 5 + 7.93 E-13
200 5 + 3.53 E-13
105 7 ∼ 0.217
210 7 ∼ .0412

Table 9: T-Test results for evolved BBSA3 and EA
with α=0.05

Bit-Length Trap Size Result p-Value
100 5 + 1.77 E-10
200 5 - 0.00179
105 7 ∼ 0.0875
210 7 - 4.43 E-14

Table 10: T-Test results for evolved BBSA3 and
Hill-Climber with α=0.05

1503

BBSA EA Hill-Climber
1 + +
2 + +
3 + +
4 - -
5 + +
6 + +
7 + +
8 - -
9 - -
10 - -
11 + +
12 - -
13 + +
14 + +
15 - -

Table 11: T-test results for all fifteen evolved al-
gorithms run on the evolved problem configuration
with α=0.05

and BBSA3, they performed well for the problem configu-
ration they were evolved on, but they did not perform as
well on other problem configurations. BBSA2, on the other
hand, did not over-specialize and performs very well on ev-
ery problem configuration. This shows that this method can
evolve general problem solvers for a problem class.

8. FUTURE WORK
The next step to improve upon the presented approach,

is to solve the issue of over-specialization. This might be
achieved by evolving the BBSAs using multiple problem con-
figurations. Each evolved BBSA would be evaluated using
a set of problem configurations that better represents the
problem configurations that the user cares about.

Multi-Objective GP should be employed to evolve BBSAs
to allow users to select the BBSA with the best trade-off
between speed and solution-quality for their purposes.

The proposed approach needs to be tested on a wider
variety of problem classes to validate it more thoroughly.
While this paper demonstrates that the proposed method
can evolve efficient BBSAs for the deceptive trap problem,
it is yet to be proven that this method will work well for
other problems and representations.

Finally, while the specific focus of this paper was to evolve
tailored BBSAs which significantly outperform more general
BBSAs on specific problem classes, the proposed approach
can easily be extended to evolve more general purpose BB-
SAs to compete directly with established general purpose
BBSAs such as EAs.

9. REFERENCES
[1] P. J. Angeline. Two Self-Adaptive Crossover

Operators for Genetic Programming. In P. J. Angeline
and K. E. Kinnear, Jr., editors, Advances in Genetic
Programming, pages 89–109. MIT Press, Cambridge,
MA, USA, 1996.

[2] K. Deb and D. Goldberg. Analyzing Deception in
Trap Functions. In Proceedings of FOGA II: the
Second Workshop on Foundations of Genetic
Algorithms, pages 93–108, 1992.

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
Fast and Elitist Multiobjective Genetic Algorithm:
NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[4] L. Dioşan and M. Oltean. Evolutionary Design of
Evolutionary Algorithms. Genetic Programming and
Evolvable Machines, 10(3):263–306, Sept. 2009.

[5] L. S. Diosan and M. Oltean. Evolving Evolutionary
Algorithms Using Evolutionary Algorithms. In
Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’07, pages
2442–2449, New York, NY, USA, July 2007. ACM.

[6] B. Edmonds. Meta-Genetic Programming:
Co-evolving the Operators of Variation. CPM Report
98-32, Centre for Policy Modelling, Manchester
Metropolitan University, UK, Aytoun St., Manchester,
M1 3GH. UK, Jan. 1998.

[7] A. E. Eiben and C. H. van Kemenade. Diagonal
Crossover in Genetic Algorithms for Numerical
Optimization. Journal of Control and Cybernetics,
26(3):447–465, 1997.

[8] B. W. Goldman and D. R. Tauritz. Self-Configuring
Crossover. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’11,
pages 575–582, New York, NY, USA, July 2011. ACM.

[9] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[10] N. Lourenço, F. Pereira, and E. Costa. Evolving
Evolutionary Algorithms. In Proceedings of the
Genetic and Evolutionary Computation Conference,
GECCO Companion ’12, pages 51–58, New York, NY,
USA, 2012. ACM.

[11] M. Oltean. Evolving Evolutionary Algorithms Using
Linear Genetic Programming. Evolutionary
Computation, 13(3):387–410, Sept. 2005.

[12] M. Oltean and C. Grosan. Evolving Evolutionary
Algorithms Using Multi Expression Programming. In
Proceedings of The 7th European Conference on
Artificial Life, pages 651–658. Springer-Verlag, 2003.

[13] S. Smit and A. Eiben. Comparing Parameter Tuning
Methods for Evolutionary Algorithms. In IEEE
Congress on Evolutionary Computation (CEC ’09),
pages 399–406, May 2009.

[14] E. Smorodkina and D. Tauritz. Toward Automating
EA Configuration: the Parent Selection Stage. In
IEEE Congress on Evolutionary Computation (CEC
’07), pages 63–70, Sept. 2007.

[15] D. Wolpert and W. Macready. No Free Lunch
Theorems For Optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82, Apr. 1997.

[16] J. R. Woodward and J. Swan. Automatically
Designing Selection Heuristics. In Proceedings of the
Genetic and Evolutionary Computation Conference,
GECCO ’11, pages 583–590, New York, NY, USA,
July 2011. ACM.

[17] J. R. Woodward and J. Swan. The Automatic
Generation of Mutation Operators for Genetic
Algorithms. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO
Companion ’12, pages 67–74, New York, NY, USA,
July 2012. ACM.

1504

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20130430152615
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20130430152615
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryList_V1
 qi2base

