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ABSTRACT
When faced with a new machine learning problem, selecting
which classifier is the best to perform the task at hand is a
very hard problem. Most solutions proposed in the litera-
ture are based on meta-learning, and use meta-data about
the problem to recommend an effective algorithm to solve
the task. This paper proposes a new approach to this prob-
lem: to build an algorithm tailored to the application prob-
lem at hand. More specifically, we propose an evolutionary
algorithm (EA) to automatically evolve Bayesian Network
Classifiers (BNCs). The method receives as input a list of
the main components of BNC algorithms, and uses an EA
to encode these components. Given an input dataset, the
method tests different combinations of components to that
specific application domain. The method was tested in 10
UCI datasets, and compared to three classical BNCs and a
greedy search algorithm. Results show that the current algo-
rithms can indeed be improved, but that the EA is currently
outperformed by the greedy search.

Categories and Subject Descriptors
I.2.6 [Induction and Knowledge Acquisition]: Learning

General Terms
Algorithms

Keywords
Bayesian Network Classifiers, Evolutionary Algorithms, Au-
tomatic Design

1. INTRODUCTION
Bayesian Networks (BNs) are powerful tools to knowledge

representation and inference under conditions of uncertainty
[8]. They usually represent data using a direct acyclic graph,
where each node represents an attribute and edges repre-
sent probabilistic dependencies among attributes. BNs were
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first used in the context of classification with Näıve Bayes,
which is considered a BN where all attributes are indepen-
dent given the class node.

In contrast with Näıve Bayes, most BNs compute the con-
ditional probability of one node given the values assigned to
others (i.e., nodes are not independent), and can be used as
classifiers that give the posterior probability distribution of
the class node given the values of other attributes. Hence,
after Näıve Bayes, many other Bayesian Network Classifiers
(BNCs) were proposed in the literature, creating models rep-
resented by trees, forests and graphs [15, 23, 24].

BNs are interesting for classification because (i) they en-
code the dependencies among all variables of the problem,
and are ready to deal with lack of data; (ii) BNs can be used
to learn causal relationships and, therefore, be used to gain
understanding about a problem domain and to predict the
consequences of events; (iii) BNs are graph models which
can be easily interpreted by domain specialists.

Although many adaptations of classical BN algorithms for
inference were made to work with a special attribute – i.e.,
the class attribute, there are no studies showing the advan-
tages of one representation or algorithms over the other.
This is the main goal of this paper: to select the best BNC
components to a target dataset using an evolutionary algo-
rithm (EA).

Different from traditional meta-learning algorithms [5],
which focus on algorithms recommendation/selection, the
approach proposed here performs generative meta-learning
[3, 21]. In this case, instead of selecting an appropriate al-
gorithm, the meta-learner builds a classifier targeting the
dataset at hand. Figure 1 shows the method in a high-level
of abstraction. It is important to note that the output of
the EA is a BNC algorithm, which in turn can generate a
BN to any dataset, although it is built tailored to the input
dataset. Previously proposed approaches, in contrast, out-
put the BN straight away, as showed by the dotted line in
Figure 1.

The proposed method works as follows. It receives a list of
the main components of BNC algorithms, and uses an EA
to encode these components. Given an input dataset, the
method tests different combinations of components to that
specific application domain. In order to evaluate the perfor-
mance of the BNC generated, the algorithm is trained with a
subset of the domain data available, and its accuracy a mea-
sure which takes into account precision and recall used as a
fitness function. At the end of the evolutionary process, the
best algorithm is tested in data from the same application
domain.
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Figure 1: Method proposed to automatically evolve
Bayesian Network Classifiers.

The algorithm was tested in 10 different datasets from
different domains extracted from the UCI Repository [1],
and compared to three popular BNCs: Näıve Bayes [18],
Tree-Augmented Näıve Bayes (TAN) [15] and K2 [10]. The
performance of the GA is also tested with different numbers
of solution evaluation, and compared to a greedy search al-
gorithm. Results showed that there is room for improvement
in BNCs even with the current set of components, which is
preliminary and can be extended with new components. In
particular, the GA obtained results equal or better than the
other algorithms in the great majority of datasets. However,
a comparison with a greedy search showed that it currently
outperforms the GA.

The reminder of this paper is organized as follows. Sec-
tion 2 reviews related work in the areas of BNC and auto-
matic evolution of algorithms. Section 3 details the proposed
method, while Section 4 presents and discusses the results
obtained. Finally, Section 5 draws some conclusions and
discusses directions of future work.

2. RELATED WORK
This section is divided in two parts. The first part de-

scribes the basic concepts of BNs and BNCs, and discusses
different types of BNCs present in the literature. The sec-
ond part refers the reader to other works that show how
EAs were previously used in BNs models, and then reviews
a set of methods proposed to evolve classification algorithms
different from BNCs.

2.1 Bayesian Networks
A BN is a robust tool to describe/represent knowledge

and draw conclusions about their properties, while taking
into account conditions of uncertainty [8]. It is represented
by a directed acyclic graph (DAG) with a conditional prob-
ability table for each node, where the tables are considered
as BN parameters. The BN structure contains nodes repre-
senting the domain of the variables and arcs between these
nodes constituting their probabilistic dependencies. In the
construction of BNs from datasets, nodes represent dataset
attributes.

There are many advantages in using BNs to model data
[16]. First, a BN is a model that encodes the dependencies
among all variables and is ready to deal with possible lack

of data. Second, it can be used to learn causal relationships
and, therefore, gain information about the problem domain
and predict the consequences of events. Third, because it
has causal semantics, BN considers the encoding of causal
prior knowledge in a straightforward manner. As it also de-
fines the strength of causal relationships as probabilities, a
BN is an ideal representation for combining prior knowledge
and data. Finally, Bayesian statistical methods in conjunc-
tion with BNs provide an efficient approach to avoid data
overfitting.

This paper focuses on the classification task, where BNs
can be adapted to build BNCs [24]. In this case, the con-
nections among attributes are different from those in simple
BNs, depending largely on the class attribute. A BNC learn-
ing algorithm will find relations among the n attributes of
the dataset (A1, ..., An), and causal relationships between
this set of attributes and the class attribute C.

Both BNs and BNCs are created in two main phases: the
definition of the network structure and the definition of the
parameters (probability tables). The main difference be-
tween BNs and BNCs is that algorithms for learning the
structure of general BNs do not consider as part of the pro-
cess a special node, namely the class node. However, general
BN learning algorithms can be modified to generate classi-
fiers, but this is not always an easy task. For more informa-
tion on general learning of BNs, see [12].

BNs were not considered classifiers until the appearance
of Näıve Bayes (NB), a simple kind of BNC that assumes the
dataset attributes are independent given the class node [7].
A full description of the NB is present in Langley et al.
[18], which shows that NB obtains surprisingly effective re-
sults (even considering independence among the attributes)
when compared to more sophisticated classification meth-
ods. In contrast, what makes BNCs important for learning
when compared to other methods, such as Artificial Neural
Networks, K-Nearest Neighbours and Decision Trees, is ex-
actly the fact that they take into account the dependencies
(influences) between pairs of attributes.

The process of learning the structure of BNs is based on
two main approaches: scoring-based and constraint-based.
In the first case, the idea is to guide the search algorithm
that builds the structure of the network using a scoring mea-
sure, such as the minimum description length [25]. On the
other hand, constraint-based algorithms have as their ma-
jor component a conditional independence test. The test
is used to analyse/explore the conditional dependence rela-
tionships between variables, and uses these relationships as
constraints to build the BN. Examples of these tests are the
χ2 and mutual information test [7].

Regardless of the approach followed, depending on the
type of relationship defined among the data attributes, BNCs
can be represented by graphs, trees or independent variables.
Friedman et al. [15] introduces the Tree-Augmented Näıve
Bayes (TAN) classifier. TAN assumes that the class variable
has no causal predecessors (parents), and that each attribute
must have the class node and at most another attribute as
its predecessors. Friedman et al. used modifications of the
work of Chow and Liu [9] in order to map the causal rela-
tionships between attributes of a dataset, and the resulting
BN is a tree.

In contrast, Cooper and Herskovits [10] proposed K2, one
of the most popular BNCs. K2 is actually an extension of
the Kulató system, proposed by the same authors in [17].
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Kulató takes as input a dataset and a causal ordering of the
variables, and generates as output the BN structure. It is a
scoring-based method guided by entropy, which initially as-
sumes that all variables are marginally independent. Then,
the system performs a greedy search, and incrementally adds
directed edges between the nodes. The search goes on while
the BN entropy decreases. The main difference between Ku-
lató and K2 is the scoring metric, which was replaced by the
Bayesian score, which works by maximizing the probability
of the resulting structure. K2 was developed for learning
general BNs, but with a simple change in its features, it can
be converted into a classifier.

The BNCs described in the preceding paragraphs are of
great importance for this paper, since they have been chosen
as baselines to the proposed approach. However, the works
of Cheng and Greiner [7, 8], Sacha et al. [23] and Santos
et al. [24] also discuss other important BNCs that serve as
basis for this work.

2.2 Evolutionary Algorithms and BNCs
Before reviewing the main works proposed for the evolu-

tion of classifiers, it is important to recall that the method
proposed here differs significantly from others already pro-
posed to build a BNC instead of a BNC algorithm. More
information on the former can be found in [19], which re-
views how previous work with EAs have solved problems
such as BN structure search, feature selection and searching
the causal ordering of the variables.

This section focuses on other methods already proposed
to automatically generate algorithms. It is important to
point out that the automatic generation of algorithms can be
viewed as a third type of meta-learning. The area of meta-
learning has emerged to recommend the best classification
method to a given (or a set of) dataset(s) [26]. There are
basically two kinds of meta-learning techniques: algorithms
selection and combination of models. In the first case, the
algorithm selects a learning algorithm to a dataset according
to meta-data characteristics, such as number of instances,
classes, among many others. The combination of models,
in turn, explores models coming from different algorithms
with different biases or models built from different subsets
of data [6, 14, 29].

The third type of meta-learning, generation of algorithms,
can be performed following two main approaches: generation
by selection and generation by construction. While gen-
eration by selection chooses existing components of poten-
tially different methods and combines them, generating an
algorithm, generation by construction combines these com-
ponents with algorithm primitives (loops, conditional, etc.)
and components that have not been tested yet for construct-
ing new learning methods. The method proposed here and
the work of Floreano et al. (Artificial Neural Networks) [13]
are examples of generation by selection, while the works of
Pappa and Freitas (Rule Induction Algorithms) [21], Lourenço
et al. (Evolutionary Algorithms) [20] and Barros et al. (De-
cision Tree Algorithms) [2, 3] are examples of generation by
construction.

3. AN APPROACH FOR EVOLVING BAYE-
SIAN NETWORK CLASSIFIERS

This section presents the proposed approach to automat-
ically evolve BNCs. As others works already proposed in

the literature, the idea here is to generate BNCs tailored
to specific datasets, instead of performing experiments for
selecting one among various methods and testing different
parameter configurations. The motivation for the study of
the evolution of BNC algorithms is that, in addition to the
advantages described in Section 2, they are represented by
a model visually understandable and interpretable, in the
same way of decision trees or rule induction algorithms.

The proposed method has two main components: (i) a set
of BNC related components and (ii) a search method to ex-
plore different combinations of these components. Figure 1
shows the process followed by the method. It receives as in-
put a dataset and, considering all the components identified
from BNCs and the search method, returns a BNC tailored
to the input dataset. The returned BNC will be suitable
for the domain of the input data, but that does not mean it
cannot generalize to other datasets.

Here we use a integer-coded genetic algorithm (GA) to
search the space of BNCs, but also experiment with a greedy
search method. In the GA, each individual represents a BNC
algorithm (see Section 3.1), randomly generated from a com-
bination of the available components. During the evaluation
of the individuals, a mapping between the individual and a
BNC algorithm, implemented in the frameworks Weka [27]
or jBNC [22, 23] is performed (see Section 3.2).

Following, the individuals undergo uniform crossover and
one-point mutation operations to generate a new population.
After a predefined number of generations, the best BNC
generated is returned and run in a test set coming from the
same application domain.

3.1 Individual Representation
As already mentioned, one of the most important steps

in this research is to identify a list of relevant components
the search algorithm (in this case, a GA) should explore
to build a solution (BNC algorithm) tailored to a specific
dataset. After studying the algorithms (classifiers) discussed
in the previous section, seven major components were identi-
fied and incorporated into the GA individual representation.
Figure 2 shows the individual representation and the range
of possible values for each position. The genes and their
allowed values are detailed bellow:

Figure 2: Individual representation for the GA.

1. Algorithm paradigm: Defines if the algorithm uses
a search method and a scoring metric to create the
structure of the BN (scoring-based approach) or ex-
amines the conditional dependencies to use them as
constrains for the search method (constraint-based ap-
proach). In the GA, this component can have values 0
or 1.

2. Type of relationship among the attributes: Spec-
ifies the type of relationship among the attributes of
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the dataset. It may be none (Näıve Bayes), a tree
(TAN and others), a forest (Forest-Augmented Näıve
Bayes and others) or a graph (K2 and others). The
four options just mentioned can be assumed by the
second gene of the chromosome.

3. Search algorithm to build the BNC structure:
Determines the procedure that builds the network stru-
cture, and can represent any traditional search method,
such as a greedy search, simulated annealing, among
others. However, the required functionalities of the
search method depend heavily on the type of relation-
ship among the attributes (item 2). The main differ-
ences among the search methods for difference struc-
tures are in the way the arcs (between two nodes) are
added, removed and reversed, and whether the meth-
ods are local or global.

• No relationship among the attributes: The-
re is no need for a search method in this case, as
a fixed structure with no arcs among attributes
is defined and used by Näıve Bayes. In this case,
different versions of Näıve Bayes can be used, dif-
fering from one another on the way they model
numeric attributes. Three different options can
be used for numerical attributes: normal distri-
bution, kernel density estimator, and supervised
discretization [4, 28].

• Relationship represented by a tree: Can
use local and global search methods. The most
popular search method in this class is based on
TAN, and is a modification of the Chow and Liu
algorithm [9] that uses the concept of maximum
weight spanning tree together with Kruskal’s al-
gorithm [11]. Variations include STAN (Selective
Tree-Augmented Näıve Bayes) and STAND (Se-
lective Tree-Augmented Näıve Bayes with Dis-
carding), which vary according to the operators
that manipulate the graph nodes.

• Relationship represented by a forest: The
scope of the forest algorithms is more restricted.
They consider three search algorithms also based
on Kruskal’s algorithm. These algorithms were
used by FAN (Forest-Augmented Näıve Bayes),
SFAN (Selective Forest-Augmented Näıve Bayes)
and SFAND (Selective Forest-Augmented Näıve
Bayes with Discarding), and differ on the types
of operators used to cut tree edges in order to
generate forests [22, 23].

• Relationships in a graph form: This kind
of relationship generates nine algorithms (max-
imum range of the chromosome). The scoring-
based approaches were inserted in the GA space
search. The search methods are: Hill Climbing
(local and global), K2 (local and global), Tabu
Search (local and global), Repeated Hill Climb-
ing (local and global) and LAGD Hill Climbing
(just local). Two Constraint-based approaches
were also considered: Conditional Independence
(CI) Search Algorithm and ICS Search Algorithm.
For more information on these methods, see [4,
28].

4. Scoring metric: Criteria for evaluating the struc-
ture of the BNC. It may not exist in constraint-based
algorithms (NB), and can assume at most eight differ-
ent values. The metrics are usually local or global, and
hence combined with local or global search methods.
In contrast with local metrics, global metrics cannot
decompose the scores of the individual nodes from the
BNC structure, and the whole structure must be con-
sidered to get a score.

For global search methods, a cross-validation strategy
is used to obtain a score based on metrics of accuracy
of the model. Three variations of cross-validation can
be used: k-Fold-CV (k-Fold Cross-Validation), LOO-
CV (Leave One Out Cross-Validation) or Cumulative-
CV (Cumulative Cross-Validation) [4]. Additionally,
two other metrics can be useful in this context: HGC
(Heckerman-Geiger-Chickering) and SB (Standard Ba-
yesian) [22].

The local search methods, in turn, allow eight dif-
ferent scoring metrics: Bayes, Entropy, BDeu, MDL
(Minimum Description Length), AIC (Akaike Informa-
tion Criterion), LC (Local Criterion), which can also
be combined with two different cross-validation pro-
cedures, namely LOO (Leave-one-out validation) and
CVi,j (i-Folds j-Times Cross-Validation) – see [4, 22,
28] for details.

5. Estimator: The estimator is used to define the ta-
bles of conditional probabilities of a BN once the stru-
cture has been learned. It estimates the probabilities
directly from data, and also depends on the type of al-
gorithm being used, being absent in some BNCs. Cur-
rently, the GA only uses one type of estimator (Simple
Estimator from Weka) as they are not easily adapted
from BNs to BNCs. Future versions of the system will
focus on this component.

6. Alpha value (Estimator): Alpha is a parameter
of the estimator, and can be interpreted as the initial
count for each probability value. In the GA, its value
starts at 0.00 and goes up to 25.00 in steps of 0.25,
assuming 100 different values. We chose not to leave
this attribute continuous to be able to perform a brute
force procedure, as detailed in Section 4.

7. Number of parents or maximum cardinality:
The last position of the genome has two different mean-
ings depending on the type of classifier (item 1) be-
ing used. The maximum number of parents of a node
is a parameter of scoring-based algorithms, and is re-
stricted to the type of relationship allowed among the
attributes (item 2). Recall that the parents of a node
causally influence the node. Constraint-based algo-
rithms, in contrast, do not require a number of par-
ents but a maximum cardinality. The idea of this class
of algorithm is to test whether each pair of variables
(or attributes) of the dataset, like x and y, are con-
ditionally independent given a set of variables Z. Z
is defined by the subset of nodes that are neighbors of
both x and y in the causal graph. If the search method
used to build the network identifies an independency
(x, y|Z), the edge between x and y is removed. The
maximum cardinality determines the largest subset of
Z to be considered in conditional independence tests
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(x, y|Z). For both types of algorithms, this component
can assume values varying from 0 (not present) to the
maximum number of attributes of the dataset. As here
the biggest dataset has 9 attributes (plus class), nine
is the maximum number of parents of a node.

3.2 Fitness
In order to evaluate how effective the generated algorithms

are, the classifiers represented by each individual need to be
built and run in a dataset to generate a BNC model. Fig-
ure 3 shows the process of evaluation of a given individual.

Figure 3: Evaluation process of one individual.

Initially, each individual is mapped to a BNC algorithm
using two different frameworks that deal with BNC algo-
rithms: Weka and jBNC. In the next step, the algorithms
built are run in a training set to induce a BNC model, which
is then evaluated using a validation set. The fitness func-
tion is generated from the validation set, using the F1 mea-
sure [28].

F1 is the harmonic mean between precision and recall and
is defined in Equation 1. It is an interesting metric because
it accounts for different levels of class imbalance, and con-
siders both the precision (which is the number of correctly
classified examples over the total number of examples in
the dataset) and recall (which is the number of correctly
classified examples in class c over all examples classified as
belonging to c, regardless of their real class). In order to
prevent overfitting, the training set is resampled every n
generations.

F1 =
2 · (Precision ·Recall)
(Precision+Recall)

(1)

4. EXPERIMENTAL RESULTS
This section presents results of evolving BNCs with GAs.

As previously mentioned, the first version of the method was
simplified to give us a better understanding of the problem.
The method was tested in 10 datasets from the UCI (Uni-
versity of California Irvine) repository [1]. Table 1 shows the
datasets and their main characteristics, including number of
instances, attributes and classes.

The parameters of the genetic algorithms were set in pre-
liminary experiments, and are shown in Table 2. The rel-
atively low number of individuals and generations are due
to the complexity of the solutions generated. Recall that
each individual represents a full BNC, which will be trained
and tested in a given dataset. Recall that the training and

Table 1: Datasets used in the experiments.
Dataset # inst. Attributes #Class

Type Number
Balance-scale 625 Integer 5 3
Car 1728 Nominal 7 4
Diabetes 768 Real 9 2
Ecoli 336 Real 8 8
Glass 214 Real 10 7
Haberman 306 Integer 4 2
Iris 150 Real 5 3
Led7 2880 Binary 8 10
Liver-disorders 345 Integer/Real 7 2
Tic-tac-toe 958 Discrete 10 2

validation sets were resampled every 10 generations in order
to avoid overfitting.

Table 2: Parameters of the Genetic Algorithm.
Parameter Value

Number of Generations 50
Number of Individuals 60

Tournament size 5
Crossover probability 0.90
Mutation probability 0.10

The method proposed here follows a construction by se-
lection approach, and hence the search space does not bring
many possibilities of completely new algorithms, but rather
combinations of components already present in other algo-
rithms. The problem was modeled in a way that a brute
force search could be performed in the components space,
allowing us to compare the results of traditional BNC algo-
rithms with the ones produced by the proposed method and
the brute force.

All experiments were executed using a 5-fold cross-validati-
on procedure, and compared to three popular BNCs, namely
Näıve Bayes, Tree Augmented Näıve Bayes (TAN) and K2
in terms of F1. The aforementioned classifiers were cho-
sen because they assume different premisses when building
the BN. While Näıve Bayes assumes independence between
the attributes (the only relationship considered is among a
single attribute and the class attribute), TAN builds a tree
to represent relationships between them. K2, in turn, uses
a graph to represent the attributes relationships, with no
restrictions regarding the BNC structure. For both algo-
rithms, the value of the parameter α was set to 0.5. The
results of the GA are always averages over 10 executions.

Table 3 shows the results of F1 followed by standard devia-
tions. Two versions of the GA are presented: GA represents
the method described in Section 3, and GA-I (Initialized
GA) introduces a simple modification to GA. In this version,
the three baselines are included into the initial population of
the algorithm, to test whether it can faster improve over the
well-known popular algorithms. Results were compared us-
ing a paired t-test with confidence level 95%, and performed
in two steps. First, the results among the two versions of the
GA are compared. Second, the results among the GA and
the three other baselines are considered. For both compar-
isons, N denotes a statistically significant positive variation
for the method in that column, and H a statistically signifi-
cant negative variation according to the t-test.

Let us first consider the two versions of the GA. Note
that in 8 out of 10 cases the GA finds results as good as the
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Table 3: Comparisons of two versions of the GA with the selected baselines.
Dataset GA GA-I NB TAN K2

Balance-Scale 0.71 (0.05) H 0.87 (0.03) 0.87 (0.04) 0.70 (0.055) H 0.72 (0.05) H
Car 0.97 (0.02) 0.97 (0.02) 0.85 (0.03) H 0.94 (0.016) H 0.85 (0.03) H

Diabetes 0.73 (0.02) 0.74 (0.03) 0.75 (0.03) 0.75 (0.02) N 0.74 (0.03)
Ecoli 0.79 (0.05) 0.83 (0.04) 0.85 (0.04) 0.82 (0.03) 0.82 (0.04)
Glass 0.64 (0.07) 0.63 (0.07) 0.40 (0.06) H 0.70 (0.02) 0.68 (0.04) N

Haberman 0.66 (0.10) 0.67 (0.08) 0.71 (0.075) 0.679 (0.08) 0.68 (0.08)
Iris 0.93 (0.04) 0.93 (0.03) 0.95 (0.04) 0.932 (0.03) 0.93 (0.03)
Led7 0.73 (0.02) 0.73 (0.02) 0.73 (0.02) 0.736 (0.03) 0.73 (0.02)

Liver-Disorders 0.45 (0.10) H 0.59 (0.11) 0.56 (0.07) 0.45 (0.11) H 0.45 (0.11) H
Tic-Tac-Toe 0.70 (0.04) 0.69 (0.03) 0.65 (0.03) H 0.70 (0.02) 0.70 (0.21)

ones found by GA-I, but the latter converges faster. The
two datasets where there is a significant difference among
the two versions are balance scale and liver disorder. Liver
disorder is a special dataset, with classes represented by only
two examples, reflected in the large value of the standard
deviation. Note that, in both cases, the results obtained by
GA-I are the same as those produced by Näıve Bayes. The
dataset that presents the results we are really looking for is
car, where the results found by both versions of the GA are
better than those obtained by the other algorithms.

Considering the results obtained by the three baselines,
NB presents statistically significant worse results than GA
in three datasets (see symbol H in Table 3, column NB), and
TAN and K2 in other two. In total, the baselines were worse
than the GA in 9 cases, and better in two. These two cases
correspond to TAN in diabetes and K2 in glass. This means
that, for these datasets, GA-I lost the initial solutions rep-
resenting these algorithms during the search process. In all
other cases the results do not present statistical differences.

In a second experiment, we compare the performance of
GA-I with the one produced by a greedy search (GS) algo-
rithm, a simpler method that performs a local search. The
GS works as follows: a solution is randomly generated, and
for the first position of the individual, all possible values of
that component are tested and the best chosen as the most
appropriate one. In the next steps, the same procedure is
performed for the next positions, keeping the values of com-
ponents already searched with the best values found by the
GS. The greedy search was also executed 10 times. The re-
sults are reported in Table 4, where again the symbols N
and H represent a statistically significant positive/negative
variation. Note that, in this case, the greedy search pre-
sented better results than the GA in 7 out of 10 cases, being
only worse in the dataset car. Comparing the same results
with GA-I, it is worse than the GS in 4 cases, and better
in 3 cases. However, note that this last comparison is not
fair, as the GS was not initialized with the three well-known
algorithms.

Finally, we compared the results obtained by the two dif-
ferent search methods (GA and GS) with a brute force ap-
proach. Note that current search space allows 44,653 solu-
tions, while the other methods are performing 1,200 evalu-
ations. The results are presented in Table 5. The second
column shows the BF values for F1, while in the follow-
ing column a H represents a statistically significant negative
variation and � indicates that no statistical difference was
found. It is interesting to note that only 10 out of 50 results
presented no statistical difference to the BF, while in all
other 40 cases the brute force was better. This results indi-
cate that the algorithms currently used can be improved by

Table 4: Greedy search (GS) versus the two versions
of the proposed GA.

Dataset GS GA GA-I
Balance-Scale 0.73 (0.05) 0.71 (0.05) H 0.87 (0.03) N

Car 0.91 (0.07) 0.97 (0.02) N 0.97 (0.02) N
Diabetes 0.75 (0.03) 0.73 (0.02) H 0.74 (0.03) H
Ecoli 0.81 (0.04) 0.79 (0.05) H 0.83 (0.04)
Glass 0.70 (0.04) 0.64 (0.07) H 0.63 (0.07) H

Haberman 0.70 (0.09) 0.66 (0.10) H 0.67 (0.08) H
Iris 0.95 (0.03) 0.93 (0.04) H 0.93 (0.03)
Led7 0.74 (0.02) 0.73 (0.02) H 0.73 (0.02) H

Liver-Disorders 0.45 (0.10) 0.45 (0.10) 0.59 (0.11) N
Tic-Tac-Toe 0.70 (0.02) 0.70 (0.04) 0.692 (0.03)

finding different combinations of different components, and
we need to develop a search method capable of doing that.
Note that the GS obtained the best possible result in the
dataset tic-tac-toe, where the algorithms TAN and K2 also
had a good performance. In the other 5 cases, NB obtained
the best results as the BF, considering total independence
between the variables.

Table 5: Brute Force (BF) versus GA-I, Greedy
(GS) and the three baselines.

Dataset BF GA-I GS NB TAN K2
Balance-Scale 0.88 (0.03) � H � H H

Car 0.98 (0.01) H H H H H
Diabetes 0.78 (0.03) H H � H H
Ecoli 0.89 (0.02) H H � H H
Glass 0.76 (0.02) H H H H H

Haberman 0.74 (0.07) H H � H H
Iris 0.99 (0.02) H H H H H
Led7 0.75 (0.02) H H H H H

Liver-Disorders 0.66 (0.05) � H � H H
Tic-Tac-Toe 0.70 (0.03) H � H � �

Considering the results obtained by the GA when com-
pared to the greedy-search, we reduced the number of eval-
uations of the GA from 3,000 to 1,500, 750 and 400, respec-
tively. We report the results for 5 of the 10 initial datasets.
The datasets selected were those where the GA was better
than the GS (namely balance-scale and liver-disorder), as
good as the GS (ecoli and iris) and one case where the GA
was worst (diabetes). The results obtained are showed in
Figure 4. For all datasets except liver disorder reducing the
number of evaluations drastically from 3,000 to 400 did not
change the results. While for liver disorder it is worth using
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3,000 evaluations, for the other datasets 400 evaluations are
enough.

Figure 4: Varying the number of fitness evaluations
for the GA.

Figures 5(a) and 5(b) illustrate the fitness convergence of
the best individual, worst individual and the population av-
erage. Note that the values of fitness can fall abruptly from
one generation from another due to training set resampling,
but the values are quickly recovered. However, notice also
that the range of fitness values the algorithm can obtain here
is not huge, as we are not using any components that would
not make sense to combine and generate “bad” algorithms.
Perhaps a local search method would be useful to exploit the
search space after a first general exploration is performed.

In terms of computational time, the smallest dataset (iris)
took 45 hours to run for all 5 partitions of the 5-fold cross-
validation. The largest datasets, namely led7 and car, took
in average 19.6 and 39.7 hours to execute for each data par-
tition.

5. CONCLUSIONS AND FUTURE WORK
This work proposed the first version of a method to auto-

matically evolve Bayesian Network Classifiers. The method
is based on a GA, where each individual represents a set of
seven main components identified in the BNCs. The current
search space of the method is not huge, but that was essen-
tial to understand the nature of the problem begin dealt
with.

The method was evaluated in a set of 10 UCI datasets, and
compared with those obtained by the GA and three other
common used BNCs, namely Näıve Bayes, Tree Augmented
Näıve Bayes (TAN) and K2. A greedy search algorithm was
also implemented, and its results compared to the GA and
a brute force procedure run to serve as a optimum solution
to the problem being handled. Results showed that the GA
could generate results comparable to or better than those
obtained by the baselines, but that the greedy search could
find better solutions with a smaller number of evaluations.
From the results obtained we also observed that the three
baselines presented worse results than the brute force in the
majority of cases, showing there is room for improvement
even without adding more components to the search space.

As future work, the number of components and their func-
tionalities will be improved. Our main objective is to change
the building approach from selection to construction. In this
case, taking into account the characteristics of the datasets
at hand to generate the best algorithm, or the state of the

search algorithm can be very beneficial for the methods be-
ing proposed. In the case of the BNCs, the correlations
between the variables, for example, can be a good indicative
for choosing the best structure for the network. We also in-
tend to investigate deeper the relations between the results
produced by local and global search methods.
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