
Towards a Dynamic Benchmark for Genetic Programming

Clíodhna Tuite, Michael O’Neill, and Anthony Brabazon
Complex and Adaptive Systems Laboratory

University College Dublin, Ireland
cliodhna.tuite@gmail.com, m.oneill@ucd.ie, anthony.brabazon@ucd.ie

ABSTRACT
Following a recent call for a suite of benchmarks for genetic
programming [4], we investigate the criteria for a meaningful
dynamic benchmark for GP. We explore the design of a dy-
namic benchmark for symbolic regression, based on semantic
distance between evaluated functions, where larger distances
serve as a proxy for greater environmental change. We do
not find convincing evidence that lower semantic distance
is a good proxy for greater ease in adapting to a change.
We conclude that due to fundamental characteristics of GP,
it is difficult to come up with a single dynamic benchmark
problem which is generally applicable.

Categories and Subject Descriptors: I.2.8 [Problem
Solving, Control Methods, and Search]: Heuristic methods

Keywords: Dynamical optimization, genetic programming

1. INTRODUCTION
Following a recent call to create a suite of benchmarks for

GP [4], this paper investigates the criteria for a meaningful
GP dynamic benchmark. We are not aware of a large body
of research on GP benchmarks for dynamic environments.
Greater effort has been spent on GP techniques to cope with
dynamism in the environment [6, 2]; in the broader field of
EC, Dempsey et al. [3] organise these techniques into five
categories including: memory-based approaches, diversity-
based approaches and use of multiple populations.

Branke’s popular moving peaks dynamic benchmark [1]
(MPB) for EAs consists of a multi-dimensional, multi-modal
real-valued parameter space - located in the space are mul-
tiple peaks of different heights and widths. The fitness at
each point in the landscape is given by the maximum over
the peak functions at that point. The task for the EA is
to locate the optimum fitness point within the landscape.
None of the research reviewed in a recent review [5] of all
algorithms known to have been tested on the MPB uses GP.
Instead, many approaches used fixed-length EAs, or PSO al-
gorithms, whose representation is more suited to searching
for points in a real-valued multidimensional space.

Our first approach was to formulate a dynamic benchmark
for GP which, like the MPB, was tunable in the manner of
being able to tune the height, width and position of peaks
in a fitness landscape. We decided against pursuing this
approach, for two reasons. The first was the inability to
enumerate all points in the fitness landscape for trees of any

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6-10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

Table 1: List of Target Equations
Function Range Num. Pts.

(1) X8 + 3 × cos(X) +X5 +X [-1, 1] 20

(2) X5 +X4 +X3 + X2

4
+X ** [-1, 1] 20

(3) cos(1) × sin(X3) − ln(1) + e(X+1) + (X4) [-1, 1] 20

(4) X
X+1

−X3 + π [0, 2] 20

(5) X6 +X5 +X4 +X3 +X2 +X * [-1, 1] 20

(6) ln(X + 1) + ln(X2 + 1) * [0, 2] 20

(7)
√
X * [0, 4] 20

(8) sin(X2) × cos(X) − 1 * [-1, 1] 20

(9) X8 +X7 +X6 +X5 +X4 [-1, 1] 20

(10) X3e(−X) cos(X) sin(X)(sin2(X) cos(X) − 1) * [0, 10] 200

(11)
ln(2)
X

+ cos(X) × 7 [2, 4] 20

(12)
sin(X)+sin(X+X2)

(X−2)
** [-1, 1] 20

(13) 0.3X sin(2πX) +X10 ** [-1, 1] 20

significant depth. The second problem was that the location
of fitness peaks in the landscape would be difficult to control,
due to the presence of trees in the landscape, which, while
structurally different, evaluated to the same solution point.

We then turned our focus to an alternate benchmark spec-
ification. Instead of directly tuning a landscape of fitness
peaks, we allowed the landscape take shape in whatever way
was determined by the specification of a single optimum,
with the fitness of other points in the landscape determined
by their semantic distance to this single optimum. This re-
quired us to have a defined idea of semantic distance, and
thus necessitated that the benchmark be made for a partic-
ular application area: we chose symbolic regression. Our
benchmark measured the semantic distance between two
functions using mean squared distance. The key issue we
wished to investigate was: whether or not it is sensible to
control for the degree of change using mean squared distance
as a metric for the difference between two search targets.

2. EXPERIMENTAL PROCESS
There were two periods of evolution in our experiments -

both were 20 generations long. We used an implementation
of standard tree-based GP, which allowed for the target to
change after 20 generations. The rate of crossover was 80%,
with mutation of 5% and 15% elitism. The population size
was 100, and the maximum tree depth possible was ten. The
function set comprised the four standard arithmetic opera-
tors, as well as the sine, cosine, natural logarithm, and expo-
nential functions. The terminal set consisted of the variable
X, and the constant value 1. “Base” target functions refer to
the target function in the first period of evolution. In each
run, we started with one of 13 base functions. The base
target functions used are given in Table 1. Sampled points
were evenly spaced in the range. Most of the base functions
were either taken directly from (*) or modeled on (**) the
functions proposed for (static) symbolic regression in [4].

151

“Other” functions refer to functions which served as the
target function for the second period of evolution. The other
functions were randomly generated. We divided the other
functions into three buckets, based on mean squared dis-
tance from the base function. We ran 100 other target func-
tions from each bucket in the second period. We were not
interested in measuring the effects of huge changes in the tar-
get - bounds on buckets were chosen so that only functions
that weren’t very far from the original target were consid-
ered (with the degree of closeness varying between the three
buckets of functions). Each bucket was labeled with its lower
bound (0.25, 0.75 and 1.25), and had a width of 0.1.

There may have been other factors at play - aside from
distance from the base function - that impacted how diffi-
cult it was for GP to find “other” target functions. These
included: the absolute difficulty of finding the function from
scratch, neglecting dynamics, and, separately, the conver-
gence present in the population at the end of the first (base)
period. The former effect was mitigated by populating each
of the three buckets of other functions with a large number
(100) of functions. To control for the latter effect, the base
function was only run once. The same base population from
the final generation of the initial period, was used to seed
the populations for each of the 300 target functions in the
second period.

Table 2: Experimental Results

Base
Target

Better Performance:
Continuous or Restart?

Continuous: Closer functions
better performance?

1 Continuous Yes

2
0.25: Continuous

0.75: Restart
1.25: Restart.

Yes

3 Continuous Yes

4 Continuous
0.25 better than 1.25: Yes

0.25 better than 0.75: V. little diff.
0.75 better than 1.25: Yes

5 Continuous
0.25 better than 1.25: V. little diff.

0.25 better than 0.75: Yes
0.75 better than 1.25: No

6
0.25: Continuous

0.75: V. little difference
1.25: V. little difference

Yes

7
0.25: Continuous

0.75: V. little difference
1.25: Restart

Yes

8
0.25: V. little difference

0.75: Restart
1.25: Restart

Yes

9
0.25: Continuous

0.75: V. little difference
1.25: Restart

0.25 better than 1.25: Yes
0.25 better than 0.75: Yes
0.75 better than 1.25: No

10 Restart Yes

11 Continuous No

12
0.25: V. little difference

0.75: Restart
1.25: V. little difference

0.25 better than 1.25: Yes
0.25 better than 0.75: Yes
0.75 better than 1.25: No

13 Restart Yes

For comparison purposes, we also re-initialized the pop-
ulation when the target function changed. We did this to
compare continuous evolution - where the population which
had evolved towards the old target was carried forward in the
second period - against evolution where the old population
was discarded, and evolution was re-started from scratch.

Results are summarized in Table 2. Results are inter-
preted in terms of mean fitness for the second 20 genera-
tions of evolution, averaged over 100 runs for each bucket.
We record “very little difference” between two sets of re-
sults, where performances are within 10% of each other. We
find limited preliminary evidence that semantic distance is
a good proxy for ease of adaptation for GP in the dynamic
environments described. For nine of the base target func-
tions, functions in closer buckets have better or similar per-
formance in the second period, than functions in the further
away buckets. However, in three of these cases (functions 8,

10 and 13), for all buckets, the performance of the restart
populations is better than or similar to the performance of
the continuous populations. Semantic closeness appears to
confer an advantage on closer functions in the second pe-
riod of continuous evolution in these cases, but, significantly,
restarting evolution at generation 20 outperforms continuous
evolution. This raises questions as to whether the (gener-
ally) superior average performance of functions in the closer
buckets, for continuous evolution, is the result of chance.

3. CONCLUSIONS AND FUTURE WORK
Existing EA dynamic benchmarks, such as the moving

peaks benchmark, are unsuitable for GP due to the represent-
ation-bias towards EAs which use a fixed-length real-valued
encoding. As a first step towards creating a GP dynamic
benchmark, we investigated whether there was a predictable
relationship between the mean squared distance between a
first- and second-period target function, and GP perfor-
mance in the second-period. If this relationship existed,
specifying a benchmark using mean squared distance as a
measure of environmental change, would be straightforward.

However, we do not find convincing evidence of a rela-
tionship between the mean squared distance between first-
and second-period functions, and GP performance on the
second-period function. The size of the search space seen by
GP is huge. This is coupled with the fact that, while search
is guided by fitness, it traverses an operator-based fitness
landscape. This landscape will not necessarily have nodes
which are semantically-close as neighbours (each node in
the landscape represents a possible individual). This makes
GP search difficult to predict and to analyse. Future work
includes examining a wider range of functions. We will ex-
periment with time periods other than 20 generations, and
intend on examining a greater variety and range of distances.

4. REFERENCES
[1] J. Branke. Memory enhanced evolutionary algorithms

for changing optimization problems. In Evolutionary
Computation, 1999. CEC 99. Proceedings of the 1999
Congress on, volume 3. IEEE, 1999.

[2] I. Dempsey, M. O’Neill, and A. Brabazon. Adaptive
trading with grammatical evolution. In Evolutionary
Computation, 2006. CEC 2006. IEEE Congress on,
pages 2587–2592. IEEE, 2006.

[3] I. Dempsey, M. O’Neill, and A. Brabazon. Foundations
in Grammatical Evolution for Dynamic Environments.
Springer Verlag, 2009.

[4] J. McDermott et al. Genetic programming needs better
benchmarks. In Proceedings of the fourteenth
international conference on Genetic and evolutionary
computation conference, pages 791–798. ACM, 2012.

[5] I. Moser and R. Chiong. Dynamic function
optimization: The moving peaks benchmark.
Metaheuristics for Dynamic Optimization, pages 35–59,
2013.

[6] N. Wagner, Z. Michalewicz, M. Khouja, and
R. McGregor. Time series forecasting for dynamic
environments: the dyfor genetic program model.
Evolutionary Computation, IEEE Transactions on,
11(4):433–452, 2007.

We gratefully acknowledge the financial support of Science
Foundation Ireland under Grant Number 08/SRC/FM1389.

152

