
Refining Scheduling Policies with Genetic Algorithms

ABSTRACT

Genetic Algorithms (GAs) are popular approaches in solving
various complex real-world problems. However, it is required that
a careful attention is to be paid to the contextual knowledge as
well as the implementation of genetic material and operators. On
the other hand, the job-shop scheduling (JSS) problem remains as
challenging NP-hard combinatorial problem, which attracts
researchers since it is invented. The dynamic version of job-shop
is even more challenging due to its dynamically changing
characteristics. Similar to other metaheuristic approaches, GA has
not been so successful in solving this sort of problems due to
instant decision making process needed in solving this type of
problems. Heuristic procedures such as those so called Priority
Rule or Dispatching Rules are more useful for this purpose, but,
depending on the properties and purpose of use of each, the same
performance is not expected from these instant decision making
operators. In this paper, a policy refinement approach is proposed
to optimise a sequence of Dispatching Rules (DRs) for a time-
window of scheduling process in which a GA algorithm evolves
the sequences towards an optimum configuration. The preliminary
results provided in this paper seem very encouraging.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: –
Nonnumerical Algorithms and Problems – Sequencing and
scheduling
G.1.6 [Mathematics of Computing]: Optimization – Global
Optimization
G.3 [Mathematics of Computing]: Experimental Design –
I.2.8 [Artificial Intelligence]: – Problem Solving, Control
Methods, and Search – Scheduling

General Terms
Algorithms, Management, Performance, Design, Experimentation.

Keywords
Policy refinement, genetic manipulation, semi-dynamic

1. INTRODUCTION
Job-shop scheduling (JSS) is one of well-known NP-hard
combinatorial optimization problems, where N jobs are to be
processed on M machines [26]. The complexity of such

environment is variable with respect to different performance
measures such as makespan, mean-tardiness subject to the
constraints to be satisfied. Moreover, the term complexity
becomes more meaningful with real-world dynamic scheduling. In
a static context, all constraints are deterministically known in
advance while in a dynamic version, the constraints may be either
partially or completely unknown in advance [16, 25]. Due to the
complexity of real-world problems the majority of research done
in this area is based on static JSS [29]. Examples include [8, 19].
However there are many recent researches for dynamic JSS see
for example [1, 4, 10, 16, 24, 28–31].

In this research, a semi-dynamic JSS case is considered with
which the only stochastic item is job due-dates assigned following
a probabilistic approach; total work content (TWC). The idea is to
set our approach for a typical time-window of dynamic scheduling
process, where it is aimed to be conducted through optimised
time-windows.

The importance of solving scheduling problems in manufacturing
systems lies behind issues in production systems. Due to its severe
complexity, many researchers (especially from 1950s’ onwards)
have tested their problem solving approaches using JSS problems.
Examples including Tabu Search [27], Simulated Annealing [15],
and other heuristics such as Giffler and Thomson [21]. In the
other hand, many researchers have followed Davis [14] whom
proposed the first Genetic Algorithm (GA) for solving scheduling
problems.

Holland [9] had devised GA to be used as a search heuristic for
solving adaptation problems inspiring of natural evolution
systems. Since then, it has become one of the most popular
algorithms for solving scheduling problems besides other soft
computing techniques such as Bee Colony Algorithm [11], Ant
Colony Optimisation [22]. Since JSS is NP hard, the aim is
switched from finding the optimum to a near-optimum since none
of the heuristic approach can guarantee the optimum [18]. Since
we know that GA reflects imitation to biological processes and
developed by [9] for adaptation problems, it is sensible to use this
approach in designing adaptable algorithms for solving dynamic
problems [17, 25]. However, GA has its own drawbacks in use
such as representation of the problem in the algorithm [7, 8, 25].

Although GA is an appropriate approach to search for solutions
but modifying it to suit the problem domain by using real-world
knowledge is also vital [13]. Dynamic job-shop scheduling
problem is even more challenging than the classical one due to its
dynamically changing characteristics. Similar to other
metaheuristic approaches, GA has not been so successful in
solving this sort of problems due to the instant decision making
process needed in solving dynamic problems such as dynamic
JSS. Heuristic procedures so called Priority Rule or Dispatching
Rules are more useful for this purpose, but, depending on the

Emin Ogur
Department of Computer Science & Technology

University of Bedfordshire
Luton, Beds, LU1 3JU,UK

emin.ogur@beds.ac.uk

Mehmet E. Aydin
Department of Computer Science & Technology

University of Bedfordshire
Luton, Beds, LU1 3JU, UK

mehmet.aydin@beds.ac.uk

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright © 2013 ACM 978-1-4503-1963-8/13/07...$15.00.

1513

technical features and the purpose of use of each rule, the same
performance cannot be expected from these instant decision
making operators. In this paper, a policy refinement approach
adopted and proposed to set up a sequence of Dispatching Rules
(DRs) for a typical time-window of scheduling process with
which a GA algorithm evolves the sequences towards an optimum
configuration. Strings of digits are adopted to represent policies
with which it is followed to develop a complete schedule. It is
well-known that a metaheuristic such as GA on its own is not
advantageous for devising the sequence of tasks within a dynamic
context, where instant decision making is needed for dynamic
scheduling, while a search with GA will last much longer that
makes it out of consideration. However priority-based operators
(DRs) which we make use of in this research has an advantage of
online search for responsive and instant decision making. An
optimised combination of this sort of context-aware operators is
believed to provide a better solution.

Dorndorf and Pesch [5] have used a similar approach to ours but
the significant difference of our approach is that they choose only
one rule [8] in chromosome evaluation process while we propose
one rule per operation. More recently [23] have used dispatching
rules with Genetic Programming (GP) for designing effective
rules and Kawai and Fujimoto [12] have combined dispatching
rules for generating a more effective approach.

In addition, it is believed that more sophisticated and successful
algorithms can be constructed with assistance of experimental
design methods, where the impact of each gene on the genome is
calculated to bias the evolution process for better efficiency. The
next part of our approach is to further investigate impact of each
gene on the whole performance and calculate a weighting on this
basis for better incorporation with evolution process.

The rest of the paper is organised as follows. In Section 2 we
introduce the policy refinement approach with GA. In Section 3
some recent experimental results of this approach on makespan
and mean tardiness objectives as well as cross testing of objective
specific evolved fittest strings are presented. Some comparison
with results from literature and details of future work based on
experimental designs and its aim are also presented in this section.
Finally, Section 4 presents conclusions.

2. POLICY REFINEMENT APPROACH
WITH GENETIC ALGORITHMS
It is argued by Koza [3] that problem representation is a key issue
in GA. More interestingly, the first researchers worked with GA
to solve JSS problems [14] had also tried to solve representation
issue in early attempts. The main drawback of binary string and
some other representations have a high possibility of ending up in
unfeasible schedules after genetic manipulations. A possible
solution for this situation enforces to produce a repairing
mechanism such as in [8, 17], which can cause extra computation
time.

In order to avoid the problems introduced, local search and/or
priority-based operators (dispatching rules) are used in this
research are stored/represented in genes of chromosomes. These
genes then play a decision making role prior to the rule it holds
between conflict sets of jobs during the scheduling process. The
chromosome which holds these genes are considered as policies.
The role of GA in this approach is to orchestrate the iteration of
these policies through evolution with genetic manipulation and
elitism prior to each policy’s fitness. The manipulation process is
managed by use of basic operators of GA; crossover and mutation

configuration. A series of generational GA algorithms have been
devised and tested, where 3 out of 18 cases are found better
performing. The successful cases are C8, C9 and C12 as tabulated
in Table 1 with parametric configurations. For further details, see
[25]. The best result of the evolution process is adopted as the
fittest policy which is the best performing one among all other
individuals appearing in all populations.

Table 1: Best GA configurations

The chromosomes, which will be called policies now on, include a
sequence of priority rules, where each will be applied to assign a
particular task/operation on corresponding machine. For
representation of each rule in policies we use an integer-based
scheme to ease invoking and applying the corresponding rule for
making decision on which operation/job to be processed next.
Through this approach, the manipulation process will not affect
the feasibility of schedule since we only manipulate the decision
mechanism; not the order of jobs or tasks.

Our approach in solving JSS problems lies behind automatic
design of adaptable scheduling policies through iteration
/evolution as part of GA process. Rather than evolving the task
order or editing job process order, similar to [5, 25] we use DRs
for decision making process. We first define two sets as follows:

},|)({ , MjNios jik  and

}/,,,,{ RPTSlackEDDFIFOSDRSPTk 

where s denotes a complete schedule, oi,j denotes ith operation of

job j to be scheduled with policy consisting of rules, k , which

are given as the function of oi,j. Since the whole scheduling
process is managed through this policy, a new schedule can be

denoted as ,..}2,1|{ˆ  ks k where NMs ˆ . This

brings in a probabilistic approach to task assignment to resources

[5, 25] because oi,j is assigned with an undetermined k in an

unknown time within ŝ . As explained before, the decision
making mechanism in this context is very quick and hence the
computation time is reduced where a great computation time is
needed when using other heuristics such as breadth-first and
depth-first search [5]. Through this approach, the aim is to find
local optimum solutions using adaptable sequences of instant-
decision-making rules rather than searching for the global
optimal. Thus, an adaptable algorithm for dynamic environments
can be generated. More details on how to develop adaptable
algorithms can be found in [16].

3. EXPERIMENTAL RESULTS
The policy refinement approach with GA is applied to 10 JSS
problems of 10x10 (MxN) size from OR library (Table 2) to
optimise the schedules with respect to makespan and mean
tardiness objectives. The main reason for using the problems of
this size is that they are mid-size benchmark problems [5] to test
an algorithm. After testing the performance of the algorithm, it

Test
Case

Crossover
probability

(%)

Crossover
rate (%)

Mutation
rate (%)

C8 60 20 5
C9 40 20 5
C12 60 40 5

1514

Figure 2: Average Mean Tardiness of ten problems with
optimized policy using GA

can be made scalable with incorporation of time-windowing
approaches.

Table 2: Ten 10x10 benchmark problems from OR library
with their optimal makespan

3.1 Test results with fittest policies

The results in this section are produced fittest policies refined by
applying the GA approaches, which have evolved the strings
consisting policies to find the fittest string over all ten problems
(i.e. one fittest string for all problems). The chromosome
evaluation for makespan objective is calculated as

 


K

isum Cf
1 max

 and  


K

i ii Cd
K

T
1

),0max(
1 for mean

tardiness, where Cmax is the makespan, K is the number of
benchmark problems, di is the due-date of job i, Ci is completion
time of job i respectively. Since we are seeking to find a global
optimum for all problems (tested), we use this approach for
evaluation. However problem specific evaluations will be
discussed in following sections for comparison purposes.

3.1.1 Makespan
Since we know the optimal makespan results for benchmark
problems, we compare our results as per their relative error (RE)
which is calculated as YYXRE /)( where X is the test result

of the benchmark found and Y is its optimal solution.

Figure 1: Average makespan of ten problems with optimised

policy using GA

The test results by using individual rules show that SDR (shortest
distance rule) outperforms other four DRs (Figure 1) where its
average RE of makespan over ten problems is 0.12, while C9
provides 0.13, which keeps it competitive to SDR. On the other
hand, one of the two due-date dependant rules (EDD) provides the
worst result where second best performance comes from another
(Slack/RPT) that our C8 and C12 configurations compete with. It
is observed that, the most competitive results amongst

evolutionary approach come from the fittest string of test C9 (C9-
E) with an average of 0.13 RE.

3.1.2 Mean Tardiness
Unlike the test results with makespan, the best performing rule
becomes EDD among all other rules and very near to the best
evolutionary test case (C9-E). It is also observed that another due-
date-based rule Slack/RPT becomes the second best performing
rule (Figure 3). However the fittest string found by test case 9,
C9-E, provides slightly better result than the best performing rule,
EDD.

It is important to note that we could not find any data for optimal
solution of the benchmark problems in the literature for mean
tardiness objective and therefore not using RE figures.

3.2 Cross Testing of Makespan and Mean
Tardiness Fittest Policies
Figures 3 and 4 compare results of cross testing fittest strings (i.e.
experimenting makespan (MS) objective with mean tardiness
(MT) fittest and vice versa) with DRs. Here we optimised 2
policies; one with makspan and the other with mean tardiness.
Then, both fittest policies are cross tested accordingly.

3.2.1 Makespan with Mean Tardiness Fittest Policy
As discussed previously, the SDR performs better than all rules
and although competing, slightly better than evolutionary test
cases optimized for makespan objective.

Figure 3: Average makespan of ten problems with mean

tardiness fittest string

Besides that, the fittest policy of mean tardiness objective of each
test case provides close results to makespan fittest results as well
as performing better than FIFO, EDD and Slack/RPT and

0.19

0.23

0.12

0.28

0.15 0.15
0.16 0.16

0.13
0.16 0.15

0.00

0.05

0.10

0.15

0.20

0.25

0.30

26.10

43.14

19.48
15.86 16.97

25.47

16.35

23.55

12.19

20.77
17.62

0

5

10

15

20

25

30

35

40

45

50

0.19

0.23

0.12

0.28

0.15 0.15 0.16 0.16

0.13

0.16 0.15

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Problem Name Optimal
abz5 1234
abz6 943
ft10 930
la16 945
la17 784
la18 848
la19 842
la20 902

orb01 1059
orb02 888

1515

competing with SPT. This means that the fittest strings evolved
for mean tardiness objective can also be efficient for makespan.

3.2.2 Mean Tardiness with Makespan Fittest Policy
The results shows a similar picture to our previous approach
(testing MS with MT fittest) in such way that there is a minor
difference between the performance of all genetic approach test
cases (Figure 4). Hence, it is understandable that makespan fittest
string is not outperforming but remains competitive whilst used
for mean tardiness.

Figure 4: Average mean tardiness of ten problems with both

objective fittest strings

3.3 Problem specific evolution
As mentioned previously, we have also tested the algorithm on
each of the selected ten problems in order to compare with the
results taken from [5] which their approach in solving the problem
is closest to ours. In other words, we have evaluated the policy
fitness as per Cmax of each job specifically rather than an
aggregate evaluation for ten problems to be in-line with the
approach resented in [5].

Table 3: Policy refinement and P-GA makespan comparison

Table 3 presents the makespan result comparison of our policy
refinement approach with results from [5]. The results given are
the best out of 30 test cases that were made based on test case C9-
E configurations, which performed better than others. It is clearly
seen that our approach outperforms 4 (la16, la17, la18 and la19)
out of 5 problems tested by [5] where their approach performs
better than ours only for one (la20) problem. The data indicated
with “─” states that no test results were found in their research.

3.4 Statistical Analysis
In this section, we report the results of statistical analysis to reveal
the significance of the results. All experimental results presented
in this paper are averaged over 30 repetitions. Few t-tests have
been conducted to measure the significance of the differences
between the compared results. The main purpose is to investigate
how significant the differences between comparative results are,
where we compare the results produced by evolved fittest-policies
using GA-based algorithms and the best performing individual
DRs with respect to both objectives; makespan (MS) and mean-
tardiness (MT).

The results presented in Figure 1 and Figure 3 suggest that the
best performing DR is SDR with respect to MS objective while
the worst performance is delivered by EDD rule in this respect.
On the other hand, EDD becomes the best performing rule among
all others with respect to MT objective (see Figure 2 and 4).
Meanwhile, the best configuration of our GA approach is found to
be C9-E, therefore, we decided to apply t-test to reveal the
significance of the differences between the results by SDR and
EDD versus C9-E in terms of both objectives.

Table 4: t-Test results for statistical significance

Table 4 presents the t-test results conducted to test the
significance of differences across the results of the fittest-policy
evolved by C9-E, SDR and EDD priority rules with respect to
both objectives; MS and MT. The second column of the table
shows the t-test results for significance level of the comparison
between the performance of SDR rule and C9-E with respect to
both objectives while the third column presents the same kind of
statistics for EDD versus C9-E.

As discussed previously, SDR rule provides better results than any
other approach including C9-E as seen in Table 4, where the
difference between the results is insignificant even in 90%
confidence level. This means that C9-E remains competitive with
respect to MS although it does not outperform the best performing
rule, SDR. However in the case of MT objective, C9-E
significantly outperforms the SDR rule as well as all other rules
including EDD, while EDD remains competitive with C9-E as the
difference between the results are not significant in 95%
confidence level, but, others are significantly outperformed in
99% confidence level. It is clearly concluded that optimisation
with respect to MT using fittest-policies can be improved
outperforming the individual rules, while performing well with
respect to MS and vice versa. That is, a policy evolved for one
objective provides close results when applied on another.

3.5 Experimental Designs and Main Effects
As per the proposed research, our aim is to design a set of handy
experiments that could help optimise the solutions further.
Orthogonal arrays (OA) have been used for designing experiments
in the literature. For example [32] uses OA in designing crossover
operator in GA to solve multimedia multicast routing. As they
support the idea that use of such sophisticated experimental
design provides a better performance, it is believed that the use of
such statistics will lead to development of a probabilistic model
such that evolved fittest policies can be converted into such
probabilistic model to find chose the most fitting DR subject to

26.10

43.14

19.48
15.86 16.97 16.35

17.98

12.19

22.86

17.62

22.14

0

5

10

15

20

25

30

35

40

45

50

Problem Name Policy Refinement P-GA Optimal
abz5 1266 ─ 1234
abz6 977 ─ 943
ft10 964 ─ 930
la16 985 1008 945
la17 793 809 784
la18 880 916 848
la19 875 880 842
la20 938 928 902

orb01 1110 ─ 1059
orb02 912 ─ 888

Objective SDR vs C9-E EDD vs C9-E

Makespan (MS) 0.1789 5.8E-05

Mean-Tardiness (MT) 0.0977 0.1170

1516

imposed circumstances. This is expected to facilitate for better
scalability.

In factorial experimental design, a full factorial approach would
provide all possible combinations of policies in our case.
However, since we have 5 rules (levels) and 100 operations
(factors), which mean a problem size of 5100, it is almost
impossible to conduct such set of experiments with available
computation resources. In fact, OA helps not to test all
combinations with design of sufficient number of policies and
appropriate combinations which represents possible combinations
[6, 20, 32] . In this way, a more reasonable experiment is
achieved.

By use of experimental designs, we aim to analyse the main
effects of each gene within a policy that would guide us to
modification of such gene for optimisation. Hence, a better
algorithm will be generated and a brighter picture of solution
space will be seen.

4. CONCLUSION
An adaptable algorithm for instant decision making mechanism
within dynamic job shop scheduling process to make selection
among conflict set of operations is generated and tested
successfully. Due to responsiveness and time sensitivity, dynamic
job shop scheduling cannot afford long-lasting search process,
but, can only use instant decision making procedures. In this
paper, a GA –based evolutionary algorithm is proposed to refine
the policies consisting sequences of priority rules for this purpose.
The evolution is applied with respect to two objectives; makespan
and mean-tardiness. The preliminary results suggest that the
fittest-policies evolved with GA significantly outperform the
individual priority rules with respect to mean-tardiness while
remain competitive to the best rules with respect to makespan.
We have concluded that optimisation with respect to MT using
fittest-policies can be improved outperforming the individual
rules, while performing well with respect to MS, too. Similarly,
optimisation with MS also provides competitive results to DRs for
MT objective respectively.

The test results are compared with a similar approach from
literature and provide better results. However, our aim is to take
this a step further with design of experiments and this will be the
basis of our future work because we believe that understanding
the affects of genes on schedule will provide a better picture of the
solution space and hence, guide us to a more sophisticated
algorithm.

In addition, although a semi-dynamic version of JSS is tested in
this paper, one of the core aims of our research is to test the
algorithm in a fully dynamic environment where job arrivals,
machine break downs and other perturbations occur. However we
are keen to continue using GA which we believe is suitable for
adaptation in such situation.

5. REFERENCES
[1] Aydin, M.E. and Öztemel, E. 2000. Dynamic job-shop

scheduling using reinforcement learning agents. Robotics
and Autonomous Systems. 33, 2–3 (2000), 169–178.

[2] Congram, RK. Potts, C., Velde, S.L.V. 1998. An iterated
dynasearch algorithm for the single-machine total
weighted tardiness scheduling problem. INFORMS
Journal on …. (1998).

[3] Dept, S.U.C.S. and Koza, J.R. 1990. Genetic
Programming: a Paradigm for Genetically Breeding
Populations of Computer Programs to Solve Problems.

[4] Dimitrov, T. and Baumann, M. 2011. Genetic algorithm
with genetic engineering technology for multi-objective
dynamic job shop scheduling problems. Proceedings of
the 13th annual conference companion on Genetic and
evolutionary computation - GECCO ’11. (2011), 833.

[5] Dorndorf, U. and Pesch, E. 1995. Evolution based
learning in a job shop scheduling environment.
Computers & Operations Research. 22, I (1995), 25–40.

[6] Fang, K.T. and Wang, Y. 1994. Number-Theoretic
Methods in Statistics. Chapman & Hall.

[7] Hart, E. and Ross, P. 1998. A heuristic combination
method for solving job-shop scheduling problems.
Parallel Problem Solving from Nature—PPSN V. (1998).

[8] Hasan, S.K. 2008. GA with priority rules for solving job-
shop scheduling problems. Proc. of the 2008 IEEE
Congress on Evolutionary Computation (CEC 2008).
(2008), 1913–1920.

[9] Holland, J.H. 1992. Adaptation in Natural and Artificial
Systems. MIT Press.

[10] Iioitorrit, D.J. and Lull, B. 1993. Scheduling the
Dynamic Job Shop *. (1993), 71–76.

[11] Karaboga, D. and Basturk, B. 2008. On the performance
of artificial bee colony (ABC) algorithm. Applied Soft
Computing. 8, 1 (2008), 687–697.

[12] Kawai, T. and Fujimoto, Y. 2005. An efficient
combination of dispatch rules for job-shop scheduling
problem. Industrial Informatics, 2005. INDIN ’05. 2005
3rd IEEE International Conference on (2005), 484–488.

[13] L. Davis 1989. Adapting Operator Probabilities in
Genetic Algorithm. Proceedings of the Third
International Conference on Genetic Algorithms. (1989),
61–69.

[14] L. Davis 1985. Job Shop Scheduling with Genetic
Algorithms. Proceedings of the First International
Conference on Genetic Algorithms. (1985), 136–140.

[15] Van Laarhoven, P. J. M., Aarts, E. H. L., & Lenstra, J. K.
(1992). Job shop scheduling by simulated annealing.
Oper. Res., 40(1), 113–125.

[16] Madureira, A., Ramos, C., & Silva, S. (2001). A Genetic
Approach for Dynamic Job-Shop. Proceedings of
MIC’2001 - 4th Metaheuristics International Conference
41, 41–46.

[17] Madureira, A., Ramos, C., & Silva, S. do C. (2003).
Using Genetic Algorithms for Dynamic Scheduling.
Proceedings of Production and Operations Management
2003 Conference (POMS’2003), Georgia (EUA).

[18] Michalewicz, Z. (1996). Genetic Algorithms + Data
Structures = Evolution Programs (Third, Rev. and Ext.
Ed.). Springer.

 [19] Miyashita, K. 2000. Job-shop scheduling with genetic
programming. Proc. of the Genetic and Evolutionary
Computation Conference (GECCO-2000). 505–512.

1517

[20] Montgomery, D., C. (1991). Design and Analysis of
Experiments (3rd ed.). New York: Wiley.

[21] Moonen, M. and Janssens, G. 2007. A Giffler-Thompson
focused genetic algorithm for the static job shop
scheduling problem. The Journal of Information and
Computational Science. 4, 2 (2007).

[22] Neto, R. F. T., & Filho, M. G. (2011). An ant colony
optimization approach to a permutational flowshop
scheduling problem with outsourcing allowed.
Computers & Operations Research, 38(9), 1286–1293.

[23] Nguyen, S., Zhang, M., Johnston, M., & Tan, K. (2012).
A Computational Study of Representations in Genetic
Programming to Evolve Dispatching Rules for the Job
Shop Scheduling Problem. Evolutionary Computation,
IEEE Transactions on.

[24] Nie, L., Gao, L., Li, P., & Zhang, L. (2011). Application
of gene expression programming on dynamic job shop
scheduling problem. Proceedings of the 2011 15th
International Conference on Computer Supported
Cooperative Work in Design (CSCWD), 291–295.

[25] Ogur, E., Aydin, M. E., & Ayhan M. B. (2012). Policy
Refinement with Genetic Algorithms for Job Shop
Scheduling. Proc. of 8th International Symposium on
Intelligent and Manufacturing Systems, 27-28 September
2012, Adrasan/Antalya/Turkey.

[26] M. Pinedo, Scheduling: Theory, Algorithms, and Systems,
3rd ed. Springer, 2008

[27] Ponnambalam, S. G., Aravindan, P., & Rajesh, S. V.
(2000). A Tabu Search Algorithm for Job Shop
Scheduling. The International Journal of Advanced
Manufacturing Technology, 16(10), 765–771.

[28] Proth, J.-M. 1998. An improvement of the Lagrangean
relaxation approach for job shop scheduling: a dynamic
programming method. IEEE Transactions on Robotics
and Automation. 14, 5 (1998), 786–795.

[29] Vazquez, M., & Whitley, L. (2000). A Comparison of
Genetic Algorithms for the Dynamic Job Shop
Scheduling Problem.

[30] Wei, Y. 2004. Composite rules selection using
reinforcement learning for dynamic job-shop scheduling.
IEEE Conference on Robotics, Automation and
Mechatronics, 2004. 2, (2004), 1083–1088.

[31] Zhang, B., Yi, L., & Xiao, S. (2005). Study of stochastic
job shop dynamic scheduling. Proceedings of the Fourth
International Conference on Machine Learning and
Cybernetics, Guangzhou, August 2005, (August), 18–21.

 [32] Zhang, Q., Leung, Y., & Member, S. (1999). An
Orthogonal Genetic Algorithm for Multimedia Multicast
Routing. IEEE Transactions On Evolutionary
Computation, 3(1), 53–62.

1518

