
Refining Scheduling Policies with Genetic Algorithms  

ABSTRACT 

Genetic Algorithms (GAs) are popular approaches in solving 
various complex real-world problems. However, it is required that 
a careful attention is to be paid to the contextual knowledge as 
well as the implementation of genetic material and operators. On 
the other hand, the job-shop scheduling (JSS) problem remains as 
challenging NP-hard combinatorial problem, which attracts 
researchers since it is invented.  The dynamic version of job-shop 
is even more challenging due to its dynamically changing 
characteristics. Similar to other metaheuristic approaches, GA has 
not been so successful in solving this sort of problems due to 
instant decision making process needed in solving this type of 
problems. Heuristic procedures such as those so called Priority 
Rule or Dispatching Rules are more useful for this purpose, but, 
depending on the properties and purpose of use of each, the same 
performance is not expected from these instant decision making 
operators. In this paper, a policy refinement approach is proposed 
to optimise a sequence of Dispatching Rules (DRs) for a time-
window of scheduling process in which a GA algorithm evolves 
the sequences towards an optimum configuration. The preliminary 
results provided in this paper seem very encouraging.  

Categories and Subject Descriptors 
F.2.2 [Analysis of Algorithms and Problem Complexity]: – 
Nonnumerical Algorithms and Problems – Sequencing and 
scheduling  
G.1.6 [Mathematics of Computing]: Optimization – Global 
Optimization  
G.3 [Mathematics of Computing]: Experimental Design –  
I.2.8 [Artificial Intelligence]: – Problem Solving, Control 
Methods, and Search – Scheduling  

General Terms 
Algorithms, Management, Performance, Design, Experimentation. 

Keywords 
Policy refinement, genetic manipulation, semi-dynamic 

1. INTRODUCTION 
Job-shop scheduling (JSS) is one of well-known NP-hard 
combinatorial optimization problems, where N jobs are to be 
processed on M machines [26]. The complexity of such 

environment is variable with respect to different performance 
measures such as makespan, mean-tardiness subject to the 
constraints to be satisfied. Moreover, the term complexity 
becomes more meaningful with real-world dynamic scheduling. In 
a static context, all constraints are deterministically known in 
advance while in a dynamic version, the constraints may be either 
partially or completely unknown in advance [16, 25]. Due to the 
complexity of real-world problems the majority of research done 
in this area is based on static JSS [29]. Examples include [8, 19]. 
However there are many recent researches for dynamic JSS see 
for example [1, 4, 10, 16, 24, 28–31].  

In this research, a semi-dynamic JSS case is considered with 
which the only stochastic item is job due-dates assigned following 
a probabilistic approach; total work content (TWC). The idea is to 
set our approach for a typical time-window of dynamic scheduling 
process, where it is aimed to be conducted through optimised 
time-windows. 

The importance of solving scheduling problems in manufacturing 
systems lies behind issues in production systems. Due to its severe 
complexity, many researchers (especially from 1950s’ onwards) 
have tested their problem solving approaches using JSS problems. 
Examples including Tabu Search [27], Simulated Annealing [15], 
and other heuristics such as Giffler and Thomson [21]. In the 
other hand, many researchers have followed Davis [14] whom 
proposed the first Genetic Algorithm (GA) for solving scheduling 
problems.  

Holland [9] had devised GA to be used as a search heuristic for 
solving adaptation problems inspiring of natural evolution 
systems. Since then, it has become one of the most popular 
algorithms for solving scheduling problems besides other soft 
computing techniques such as Bee Colony Algorithm [11], Ant 
Colony Optimisation [22]. Since JSS is NP hard, the aim is 
switched from finding the optimum to a near-optimum since none 
of the heuristic approach can guarantee the optimum [18]. Since 
we know that GA reflects imitation to biological processes and 
developed by [9] for adaptation problems, it is sensible to use this 
approach in designing adaptable algorithms for solving dynamic 
problems [17, 25]. However, GA has its own drawbacks in use 
such as representation of the problem in the algorithm [7, 8, 25]. 

Although GA is an appropriate approach to search for solutions 
but modifying it to suit the problem domain by using real-world 
knowledge is also vital [13]. Dynamic job-shop scheduling 
problem is even more challenging than the classical one due to its 
dynamically changing characteristics. Similar to other 
metaheuristic approaches, GA has not been so successful in 
solving this sort of problems due to the instant decision making 
process needed in solving dynamic problems such as dynamic 
JSS. Heuristic procedures so called Priority Rule or Dispatching 
Rules are more useful for this purpose, but, depending on the 
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technical features and the purpose of use of each rule, the same 
performance cannot be expected from these instant decision 
making operators. In this paper, a policy refinement approach 
adopted and proposed to set up a sequence of Dispatching Rules 
(DRs) for a typical time-window of scheduling process with 
which a GA algorithm evolves the sequences towards an optimum 
configuration.  Strings of digits are adopted to represent policies 
with which it is followed to develop a complete schedule. It is 
well-known that a metaheuristic such as GA on its own is not 
advantageous for devising the sequence of tasks within a dynamic 
context, where instant decision making is needed for dynamic 
scheduling, while a search with GA will last much longer that 
makes it out of consideration. However priority-based operators 
(DRs) which we make use of in this research has an advantage of 
online search for responsive and instant decision making. An 
optimised combination of this sort of context-aware operators is 
believed to provide a better solution. 

Dorndorf and Pesch [5] have used a similar approach to ours but 
the significant difference of our approach is that they choose only 
one rule [8] in chromosome evaluation process while we propose 
one rule per operation. More recently [23] have used dispatching 
rules with Genetic Programming (GP) for designing effective 
rules and Kawai and Fujimoto [12] have combined dispatching 
rules for generating a more effective approach. 

In addition, it is believed that more sophisticated and successful 
algorithms can be constructed with assistance of experimental 
design methods, where the impact of each gene on the genome is 
calculated to bias the evolution process for better efficiency. The 
next part of our approach is to further investigate impact of each 
gene on the whole performance and calculate a weighting on this 
basis for better incorporation with evolution process.  

The rest of the paper is organised as follows. In Section 2 we 
introduce the policy refinement approach with GA. In Section 3 
some recent experimental results of this approach on makespan 
and mean tardiness objectives as well as cross testing of objective 
specific evolved fittest strings are presented. Some comparison 
with results from literature and details of future work based on 
experimental designs and its aim are also presented in this section. 
Finally, Section 4 presents conclusions. 

2. POLICY REFINEMENT APPROACH 
WITH GENETIC ALGORITHMS 
It is argued by Koza [3] that problem representation is a key issue 
in GA. More interestingly, the first researchers worked with GA 
to solve JSS problems [14] had also tried to solve representation 
issue in early attempts. The main drawback of binary string and 
some other representations have a high possibility of ending up in 
unfeasible schedules after genetic manipulations. A possible 
solution for this situation enforces to produce a repairing 
mechanism such as in [8, 17], which can cause extra computation 
time. 

In order to avoid the problems introduced, local search and/or 
priority-based operators (dispatching rules) are used in this 
research are stored/represented in genes of chromosomes. These 
genes then play a decision making role prior to the rule it holds 
between conflict sets of jobs during the scheduling process. The 
chromosome which holds these genes are considered as policies.  
The role of GA in this approach is to orchestrate the iteration of 
these policies through evolution with genetic manipulation and 
elitism prior to each policy’s fitness. The manipulation process is 
managed by use of basic operators of GA; crossover and mutation 

configuration. A series of generational GA algorithms have been 
devised and tested, where 3 out of 18 cases are found better 
performing. The successful cases are C8, C9 and C12 as tabulated 
in Table 1 with parametric configurations. For further details, see 
[25]. The best result of the evolution process is adopted as the 
fittest policy which is the best performing one among all other 
individuals appearing in all populations. 

Table 1: Best GA configurations 

 

  

 

 

 

The chromosomes, which will be called policies now on, include a 
sequence of priority rules, where each will be applied to assign a 
particular task/operation on corresponding machine. For 
representation of each rule in policies we use an integer-based 
scheme to ease invoking and applying the corresponding rule for 
making decision on which operation/job to be processed next. 
Through this approach, the manipulation process will not affect 
the feasibility of schedule since we only manipulate the decision 
mechanism; not the order of jobs or tasks. 

Our approach in solving JSS problems lies behind automatic 
design of adaptable scheduling policies through iteration 
/evolution as part of GA process. Rather than evolving the task 
order or editing job process order, similar to [5, 25] we use DRs 
for decision making process. We first define two sets as follows:  

},|)({ , MjNios jik   and 

}/,,,,{ RPTSlackEDDFIFOSDRSPTk   

where s denotes a complete schedule, oi,j denotes ith operation of 

job j to be scheduled with policy consisting of rules, k , which 

are given as the function of oi,j. Since the whole scheduling 
process is managed through this policy, a new schedule can be 

denoted as ,..}2,1|{ˆ  ks k  where NMs ˆ . This 

brings in a probabilistic approach to task assignment to resources 

[5, 25] because oi,j is assigned with an undetermined k  in an 

unknown time within ŝ . As explained before, the decision 
making mechanism in this context is very quick and hence the 
computation time is reduced where a great computation time is 
needed when using other heuristics such as breadth-first and 
depth-first search [5]. Through this approach, the aim is to find 
local optimum solutions using adaptable sequences of  instant-
decision-making rules rather than searching for the global 
optimal. Thus, an adaptable algorithm for dynamic environments 
can be generated. More details on how to develop adaptable 
algorithms can be found in  [16].  

3. EXPERIMENTAL RESULTS 
The policy refinement approach with GA is applied to 10 JSS 
problems of 10x10 (MxN) size from OR library (Table 2) to 
optimise the schedules with respect to makespan and mean 
tardiness objectives. The main reason for using the problems of 
this size is that they are mid-size benchmark problems [5] to test 
an algorithm. After testing the performance of the algorithm, it 

Test 
Case 

Crossover 
probability 

(%) 

Crossover 
rate (%) 

Mutation 
rate (%) 

C8 60 20 5 
C9 40 20 5 
C12 60 40 5 
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Figure 2: Average Mean Tardiness of ten problems with 
optimized policy using GA  

can be made scalable with incorporation of time-windowing 
approaches. 
 

Table 2: Ten 10x10 benchmark problems from OR library 
with their optimal makespan 

 

 

 

 

 

 

 

 

 

3.1 Test results with fittest policies   
 

The results in this section are produced fittest policies refined by 
applying the GA approaches, which have evolved the strings 
consisting policies to find the fittest string over all ten problems 
(i.e. one fittest string for all problems). The chromosome 
evaluation for makespan objective is calculated as 

 


K

isum Cf
1 max

 and  


K

i ii Cd
K

T
1

),0max(
1  for mean 

tardiness, where Cmax is the makespan, K is the number of 
benchmark problems, di is the due-date of job i, Ci is completion 
time of job i respectively. Since we are seeking to find a global 
optimum for all problems (tested), we use this approach for 
evaluation. However problem specific evaluations will be 
discussed in following sections for comparison purposes.  

3.1.1 Makespan 
Since we know the optimal makespan results for benchmark 
problems, we compare our results as per their relative error (RE) 
which is calculated as YYXRE /)(  where X is the test result 

of the benchmark found and Y is its optimal solution.  

 
Figure 1: Average makespan of ten problems with optimised 

policy using GA  

The test results by using individual rules show that SDR (shortest 
distance rule) outperforms other four DRs (Figure 1) where its 
average RE of makespan over ten problems is 0.12, while C9 
provides 0.13, which keeps it competitive to SDR. On the other 
hand, one of the two due-date dependant rules (EDD) provides the 
worst result where second best performance comes from another 
(Slack/RPT) that our C8 and C12 configurations compete with. It 
is observed that, the most competitive results amongst 

evolutionary approach come from the fittest string of test C9 (C9-
E) with an average of 0.13 RE. 

3.1.2 Mean Tardiness 
Unlike the test results with makespan, the best performing rule 
becomes EDD among all other rules and very near to the best 
evolutionary test case (C9-E). It is also observed that another due-
date-based rule Slack/RPT becomes the second best performing 
rule (Figure 3). However the fittest string found by test case 9, 
C9-E, provides slightly better result than the best performing rule, 
EDD. 
 

 
 

 

It is important to note that we could not find any data for optimal 
solution of the benchmark problems in the literature for mean 
tardiness objective and therefore not using RE figures. 

3.2 Cross Testing of Makespan and Mean 
Tardiness Fittest Policies 
Figures 3 and 4 compare results of cross testing fittest strings (i.e. 
experimenting makespan (MS) objective with mean tardiness 
(MT) fittest and vice versa) with DRs. Here we optimised 2 
policies; one with makspan and the other with mean tardiness. 
Then, both fittest policies are cross tested accordingly. 

3.2.1 Makespan with Mean Tardiness Fittest Policy 
As discussed previously, the SDR performs better than all rules 
and although competing, slightly better than evolutionary test 
cases optimized for makespan objective. 

 
Figure 3: Average makespan of ten problems with mean 

tardiness fittest string 

 

Besides that, the fittest policy of mean tardiness objective of each 
test case provides close results to makespan fittest results as well 
as performing better than FIFO, EDD and Slack/RPT and 
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competing with SPT. This means that the fittest strings evolved 
for mean tardiness objective can also be efficient for makespan. 

3.2.2 Mean Tardiness with Makespan Fittest Policy 
The results shows a similar picture to our previous approach 
(testing MS with MT fittest) in such way that there is a minor 
difference between the performance of all genetic approach test 
cases (Figure 4). Hence, it is understandable that makespan fittest 
string is not outperforming but remains competitive whilst used 
for mean tardiness.  

 
Figure 4: Average mean tardiness of ten problems with both 

objective fittest strings 

3.3 Problem specific evolution 
As mentioned previously, we have also tested the algorithm on 
each of the selected ten problems in order to compare with the 
results taken from [5] which their approach in solving the problem 
is closest to ours. In other words, we have evaluated the policy 
fitness as per Cmax of each job specifically rather than an 
aggregate evaluation for ten problems to be in-line with the 
approach resented in [5]. 

 

Table 3: Policy refinement and P-GA makespan comparison 

 

Table 3 presents the makespan result comparison of our policy 
refinement approach with results from [5]. The results given are 
the best out of 30 test cases that were made based on test case C9-
E configurations, which performed better than others. It is clearly 
seen that our approach outperforms 4 (la16, la17, la18 and la19) 
out of 5 problems tested by [5] where their approach performs 
better than ours only for one (la20) problem. The data indicated 
with “─” states that no test results were found in their research. 
 

3.4 Statistical Analysis 
In this section, we report the results of statistical analysis to reveal 
the significance of the results. All experimental results presented 
in this paper are averaged over 30 repetitions.  Few t-tests have 
been conducted to measure the significance of the differences 
between the compared results. The main purpose is to investigate 
how significant the differences between comparative results are, 
where we compare the results produced by evolved fittest-policies 
using GA-based algorithms and the best performing individual 
DRs with respect to both objectives; makespan (MS) and mean-
tardiness (MT).  

The results presented in Figure 1 and Figure 3 suggest that the 
best performing DR is SDR with respect to MS objective while 
the worst performance is delivered by EDD rule in this respect. 
On the other hand, EDD becomes the best performing rule among 
all others with respect to MT objective (see Figure 2 and 4). 
Meanwhile, the best configuration of our GA approach is found to 
be C9-E, therefore, we decided to apply t-test to reveal the 
significance of the differences between the results by SDR and 
EDD versus C9-E in terms of both objectives. 

Table 4: t-Test results for statistical significance 

 

Table 4 presents the t-test results conducted to test the 
significance of differences across the results of the fittest-policy 
evolved by C9-E, SDR and EDD priority rules with respect to 
both objectives; MS and MT. The second column of the table 
shows the t-test results for significance level of the comparison 
between the performance of SDR rule and C9-E with respect to 
both objectives while the third column presents the same kind of 
statistics for EDD versus C9-E.  

As discussed previously, SDR rule provides better results than any 
other approach including C9-E as seen in Table 4, where the 
difference between the results is insignificant even in 90% 
confidence level. This means that C9-E remains competitive with 
respect to MS although it does not outperform the best performing 
rule, SDR.  However in the case of MT objective, C9-E 
significantly outperforms the SDR rule as well as all other rules 
including EDD, while EDD remains competitive with C9-E as the 
difference between the results are not significant in 95% 
confidence level, but, others are significantly outperformed in 
99% confidence level.   It is clearly concluded that optimisation 
with respect to MT using fittest-policies can be improved 
outperforming the individual rules, while performing well with 
respect to MS and vice versa. That is, a policy evolved for one 
objective provides close results when applied on another. 

3.5 Experimental Designs and Main Effects 
As per the proposed research, our aim is to design a set of handy 
experiments that could help optimise the solutions further. 
Orthogonal arrays (OA) have been used for designing experiments 
in the literature. For example [32] uses OA in designing crossover 
operator in GA to solve multimedia multicast routing. As they 
support the idea that use of such sophisticated experimental 
design provides a better performance, it is believed that the use of 
such statistics will lead to development of a probabilistic model 
such that evolved fittest policies can be converted into such 
probabilistic model to find chose the most fitting DR subject to 
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imposed circumstances. This is expected to facilitate for better 
scalability. 

In factorial experimental design, a full factorial approach would 
provide all possible combinations of policies in our case. 
However, since we have 5 rules (levels) and 100 operations 
(factors), which mean a problem size of 5100, it is almost 
impossible to conduct such set of experiments with available 
computation resources. In fact, OA helps not to test all 
combinations with design of sufficient number of policies and 
appropriate combinations which represents possible combinations 
[6, 20, 32] . In this way, a more reasonable experiment is 
achieved. 

By use of experimental designs, we aim to analyse the main 
effects of each gene within a policy that would guide us to 
modification of such gene for optimisation. Hence, a better 
algorithm will be generated and a brighter picture of solution 
space will be seen. 

 

4. CONCLUSION 
An adaptable algorithm for instant decision making mechanism 
within dynamic job shop scheduling process to make selection 
among conflict set of operations is generated and tested 
successfully. Due to responsiveness and time sensitivity, dynamic 
job shop scheduling cannot afford long-lasting search process, 
but, can only use instant decision making procedures. In this 
paper, a GA –based evolutionary algorithm is proposed to refine 
the policies consisting sequences of priority rules for this purpose. 
The evolution is applied with respect to two objectives; makespan 
and mean-tardiness. The preliminary results suggest that the 
fittest-policies evolved with GA significantly outperform the 
individual priority rules with respect to mean-tardiness while 
remain competitive to the best rules with respect to makespan.  
We have concluded that optimisation with respect to MT using 
fittest-policies can be improved outperforming the individual 
rules, while performing well with respect to MS, too. Similarly, 
optimisation with MS also provides competitive results to DRs for 
MT objective respectively. 

The test results are compared with a similar approach from 
literature and provide better results. However, our aim is to take 
this a step further with design of experiments and this will be the 
basis of our future work because we believe that understanding 
the affects of genes on schedule will provide a better picture of the 
solution space and hence, guide us to a more sophisticated 
algorithm.  

In addition, although a semi-dynamic version of JSS is tested in 
this paper, one of the core aims of our research is to test the 
algorithm in a fully dynamic environment where job arrivals, 
machine break downs and other perturbations occur. However we 
are keen to continue using GA which we believe is suitable for 
adaptation in such situation. 
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