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ABSTRACT

Concerns about climate change, energy security and the
volatility of the price of fossil fuels has led to an increased
demand for renewable energy. With wind turbines being one
of the most mature renewable energy technologies available,
the global use of wind power has been growing at over 20%
annually, with further adoption to be expected. As a result
of the inherent variability of the wind in combination with
the increased uptake, demand for accurate wind forecasting,
over a wide range of time scales has also increased.

We report early work as part of the EU FP7 project
’ORIGIN’, which will exploit wind speed forecasting, and
implement and evaluate smart-meter based energy manage-
ment in 300 households in three ecovillages across Europe.
The ORIGIN system will capitalise on automated weather-
station data (available cheaply) to inform predictions of the
wind-turbine generated power that may be available in short
term future time windows. Accurate and reliable wind-speed
forecasting is essential in this enterprise.

A range of different methods for wind forecasting have
been developed, ranging from relatively simple time series
analysis to the use of a combination of global weather fore-
casting, computational fluid dynamics and machine learn-
ing methods. Here we focus on the application of neural
networks, without (for the time being) the use of numerical
weather predictions or expensive physical modelling meth-
ods. While work of this nature has been performed before,
using past wind speeds to make predictions into the future,
here we explore the use of additional recent meteorologi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’13 Companion, July 6-10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

Alan P. Reynolds
School of Mathematical and
Computer Sciences
Heriot-Watt University
Edinburgh, Scotland
EH14 4AS
a.reynolds@hw.ac.uk

1521

Stuart Galloway
Dept of Electronic and
Electrical Eng’g.
Strathclyde University
Glasgow, Scotland

G11XQ
S.Galloway@strath.ac.uk

Andrew D. Peacock
School of the Built
Environment
Heriot-Watt University
Edinburgh, Scotland
EH14 4AS
a.d.peacock@hw.ac.uk

cal data to improve on short-term forecasting. Specifically,
we employ evolved networks and explore many configura-
tions to assess the merits of using additional features such
as cloud cover, temperature and pressure, to predict future
wind speed.

Categories and Subject Descriptors
D.4.8 [Performance]: Modeling and prediction

General Terms

Algorithms, Experimentation, Performance

Keywords

forecasting, wind-speed, renewable energy

1. INTRODUCTION

Significant continuing penetration of renewable energy elec-
tricity generation is predicted over the next 20 years, with
projections in Europe suggesting that the share of gross gen-
eration due to renewable sources will rise to 20% in 2020 and
23% in 2030. Some studies predict even higher growth sce-
narios than this. These expectations are largely driven by
rapid growth in the use of wind energy generation, especially
in the next decade; but with continuing impressive growth
rates beyond the next decade. In total, wind energy in 2030
is expected to provide over 15 times as much electricity as
it did in 2000.

Though wind, solar and other renewable energy sources
have many advantages, it is well known that their economic
and efficient exploitation is a significant challenge, owing
to the common mismatch between availability and demand.
Simply put: solar energy is (almost by definition) rarely
available when we need to warm our homes. Meanwhile,
exploitably windy weather is rarely coincident with energy
demand (e.g. several hours of wind overnight provides, with
current implemented technology and systems, almost en-
tirely wasted energy). The rampant expected increase in



renewable generation has therefore sparked in recent years a
surge in research that aims to address this problem of align-
ing demand and supply. One such project is "ORIGIN (Or-
chestration of Renewable Integrated Generation in Neigh-
bourhoods)’, funded within the EU FP7 programme, from
late 2012 to late 2015. ORIGIN will implement smart energy
management within three ecovillage communities (i.e. com-
munities that have their own renewable generation sources)
in Europe, via smart metering and associated technology.
The heart of the ORIGIN system will be regular demand re-
alignment or other energy management suggestions (and/or

direct controls) to householders and facilities managers. These

suggestions and controls will be optimised (via a carefully
designed evolutionary algorithm) to balance ideal outcomes
within individual households with those of the community
as a whole. Meanwhile, the optimisation process will be
grounded in predictions of both renewables supply and house-
hold/community demand over a range of future time win-
dows. From hereon we concentrate on the first stage of our
research on one of the tasks that will support the ORIGIN
energy management system, This concerns the prediction of
wind energy availability in short term windows.

In this article we therefore report on the early stages
of work towards providing robust predictions for available
wind-generated power in short term windows. This relates
specifically, of course, to implementations of the ORIGIN
smart energy management system (or similar systems) within
communities that have wind turbine facilities. Such im-
plementation (in any community) will recommend the in-
stallation of an automated weather station at a suitable
place within the community (if one is not already available);
such weather stations are available at reasonable cost (e.g.
around USD 5,000), and provide hourly readings for several
weather variables, including (which we look at here): cloud
cover, humidity, pressure, temperature, visibility, wind di-
rection, and wind speed. One of the three eco-villages in-
volved in the ORIGIN project is the Findhorn community
in the North of Scotland. A weather station is currently be-
ing installed at Findhorn, however we are fortunate to have
three years’ of historical weather station data available from
a site nearby (RAF Kinloss), which we use in the experi-
ments reported here.

Broadly speaking, predicting available wind power relies
on predicting wind speed, and we focus here entirely on pre-
dicting wind speed. We look at predictions from 1 hour to
24 hours ahead. As noted in the review in section 2, Nu-
merical Weather Prediction (NWP) models are known to be
more accurate than ANN or statistical approaches from 3-6
hours ahead onwards, but it is of general interest to inves-
tigate how ANNs (based only on lcoal data) perform, since
NWP may be either unavailable, too expensive, or relatively
inaccurate for specific sites. Also, a future technique that
may work well in some sites, where NWP can be used, is to
develop a model that combines predictions from NWP with
ANNSs that exploit local data. The particular contribution
we make to the general enterprise of predicting wind speed
is to assess the use of further relevant inputs (available from
an automated weather station) beyond wind speed alone.
Previous related work has almost exclusively focused on us-
ing past wind-speed data. Our data are available from:
http://is.gd/0RIGINwind.

The remainder of this article is set out as follows. In sec-
tion 2 we provide a brief review of the recent literature in
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wind-speed prediction. Section 3 then describes a number
of baseline approaches that enable a more balanced view of
the performance of more sophisticated approaches. 'Persis-
tence’, for example,is an approach that simply guesses that
the wind speed at time ¢ + 1 (or t + N when predicting N
units in advance) will be the same as it was at time ¢. This
is a fairly accurate approach in short term windows, and sec-
tion 3 evaluates this approach along with a number of similar
approaches that also consider season, time of day and mov-
ing averages. Section 4 then describes and evaluates our
initial experiments using evolved artificial neural networks,
and compares them with the best baseline approaches. We
conclude in section 5.

2. WIND-SPEED PREDICTION

While the field of short-term wind power prediction has
been described as being young [5], a number of review pa-
pers already exist [13, 5, 14, 6] with over 380 references in
the most recent. With the rise of wind power generation in
many countries, short term prediction has rapidly risen from
being a fringe topic to become a key tool, not only for the
wind power generation companies themselves but also for
the transmission system operators (T'SOs) that must man-
age the energy balance on the grid as a whole. With the
associated growth in research, we cannot hope to provide
more than a broad summary of the general research direc-
tions here.

Broadly speaking, approaches to short term wind power
prediction fall into two categories: physical and statistical.
Physical approaches start with a numerical weather predic-
tion (NWP), including not only wind direction and speed
but also pressure, temperature, humidity and other data,
provided by a meteorological institution. However, such pre-
dictions do not directly provide wind speed at the turbine lo-
cation, but provide forecasts at points on a relatively coarse
grid. Forecasts for a carefully selected set of grid points are
converted into wind speed at the hub height of the turbine
through the use of models of the physical processes, taking
into account the roughness of the terrain and the presence
of obstacles.

In contrast, statistical and machine learning methods can
be applied without the expense (computational and other-
wise) of obtaining good quality NWP predictions and run-
ning sophisticated physical models. A range of methods have
been used, including autoregressive moving average models
(ARMA) [11, 16, 9], Kalman filters [2] and neural networks
[4, 15]. Finally, machine learning techniques may be prof-
itably combined with the physical approaches, providing a
final correction to the outputs of the physical models [18,
17].

In terms of performance, purely statistical or machine
learning approaches can perform well over shorter time scales,
but prediction methods using NWP forecasts tend to out-
perform time series approaches for lookahead times of more
than three to six hours [6]. This makes sense, given that
NWP forecasts may be provided only every 3 hours, meaning
that the current wind speed will be much more informative
for forecasting, for example, 15 minutes ahead, than an old
forecast. Hence the limited usefulness of the forecast may
not warrant the cost of obtaining it and running the physical
models to estimate wind speed at the turbine. As the looka-
head increases, the current wind speed becomes less relevant
while the meteorological knowledge encapsulated in the fore-



cast becomes invaluable. Hence in this paper we concentrate
on short-term prediction.

Neural networks have been applied to the task of wind
speed prediction both as the primary prediction method and
as a more minor component in a larger system. As an exam-
ple of the latter, Salcedo-Sanz et al. [18, 17] take the results
of global forecasting models and downscale using fifth gen-
eration mesoscale models (MMS5). The results are then used
as inputs into a neural network. They consider both the use
of single models with a single neural network [18] and the
use of multiple global forecasting models, multiple parame-
terizations of the mesoscale models, all of which are fed into
a bank of neural networks [17].

Examples of the use of neural networks as the primary
prediction method include the work of Cadena and Rivera
[4] which simply used current and previous wind speeds col-
lected at the location every hour to predict wind speed one
hour ahead, with the network being used iteratively if fore-
casts further ahead were required. Best results were ob-
tained using only the current and the previous hour’s mea-
surements as input to a three node network, suggesting a
rather simple model. More and Deo [15] used a similar
approach which again used only previous wind speed ob-
servations at the site. However, predictions were made for
mean wind speeds a day, a week or a month ahead through
the use of feed-forward and recurrent neural networks. Re-
sults were compared favourably with the time series method
ARIMA. Kariniotakis et al. [12] used inputs of current and
past wind speed and wind power to predict the average wind
turbine power for a wind park up to 2 hours in advance, in
ten minute intervals, using recurrent, high order neural net-
works.

Barbounis and Theocharis [1] and Kalogirou et al. [10]
both exploit wind speed readings at remote stations in ad-
dition to (or instead of) the readings at the local station, to
predict future local wind speeds. Only the current readings
are used as inputs by Barbounis and Theocharis, though
past wind speeds are taken into account due to the recur-
rent structure of the neural networks used. Wind speeds
are predicted up to 3 hours ahead, in 15 minute increments.
Kalogirou et al. use neural networks to predict monthly
mean wind speed at a location where data are not avail-
able, from the same data at nearby weather stations. Here
the emphasis is on extrapolating wind speed data spatially,
rather than forward in time.

3. BASELINE TECHNIQUES

In order to evaluate our neural network based approach,
we compare with a number of simple baseline algorithms.
The persistence model simply uses the current wind speed
as the predicted wind speed at all points in the future. A
simple generalization is to take the average of the last n
recordings as the prediction.

Figure 4 shows the performance of persistence for fore-
casts from 1 to 24 hours ahead, on 2012 wind data from
Kinloss, Scotland. In addition, the results of the moving
average approach is also displayed, where, for each value of
lookahead, the best sample size on the 2010-2011 data is
tested on the 2012 data.

Significant diurnal variation in the wind speed suggests
determining the mean wind speed for each hour of the day,
over the 2010-2011 period, and using this to deseasonalize
the 2012 data prior to applying persistence or moving av-
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erages. Figure 4 also shows the result of simply using the
calculated mean speeds as the prediction, and the results
of combining deseasonalization with the other approaches.
The graph for persistence indicates the root mean squared
error achieved when the current wind speed is used to pre-
dict any future wind speed, applied to the 2012 data. The
TOD average line shows results obtained when the average
wind speed for the time of day (taken over the 2010-2011
data) is used to make forecasts for 2012, ignoring the recent
observations of wind speed. The method used to obtain the
‘best average’ line was to use the simple average of the last
n observations (the sample) as the forecast — a simple gen-
eralization of persistence. This was tested on the 2010-2011
data to obtain the best sample size, n, which was then used
to obtain forecasts on the 2012 data.

The deseasonalized results were obtained by first desea-
sonalizing the data by first dividing each wind speed by the
appropriate 2010-2011 time of day average. Then the per-
sistence and best average methods were used as before, but
on the deseasonalized data. Finally, each (deseasonalized)
forecast was multiplied by the time of day average to obtain
the final forecast.

As one would expect, the predictive value of current and
recent wind speeds is greatest over short time scales — when
predicting over 13 hours ahead, the simple daily average per-
forms better. However, the best results from these simple
methods provides a baseline with which to perform compar-
isons.

4. EVOLVED NEURAL NETWORKS

Training Artificial Neural Networks (ANNs) with evolu-
tionary algorithms (EAs) is well known to provide vari-
ous advantages over backpropagation and other standard
ANN training algorithms [3, 19, 20, 7). Among these ad-
vantages are often-reported improved generalization perfor-
mance (when appropriate model selection and validation ap-
proaches are used in the EA training environment), as well
as the unbridled flexibility available in the choices of topol-
ogy, activation functions, and performance metric(s). We
expect to explore the latter flexibilities later in the project
(for example to evolve networks with specific attention to
minimising error at high wind speeds, since this relates most
saliently to energy availability). Presently, we report on the
use of a straightforward EA to evolve standard three-layer
ANNs with fixed topologies (a different fixed topology for
each experimental setup, as clarified below). At present, we
pay no particular attention to using a state of the art opti-
mization algorithm to train the ANNs (e.g. such as CMAES
[8]), since, when it comes to using EAs for learning, the
use of a particularly high-performance optimizer is arguably
at odds with the need to learn reliable and robust models.
However there remains a need to search the space with suit-
able efficiency to arrive in the region of good models, and so
this is an area we wuill return to in the near future.

4.1 Algorithm/Experiment Details

In all experiments reported here, the EA is a steady state
model with a population size of 20. Each chromosome in the
population encodes an ANN as an array of double precision
numbers, each representing a specific link weight or node
bias. All weights are initialised to uniform random value be-
tween -1 and 1 (also, input data are normalised,as described
below). Following evaluation of each member of the initial



population, the following sequence of events then comprises
a ’generation’: (i) a single parent is selected via binary tour-
nament selection; (ii) a child is produced from this parent by
choosing an ANN weight uniformly at random, and adding a
Gaussian perturbation with mean zero and std 0.1; (iii) the
child is evaluated; (iv) if the child’s fitness is no worse than
that of the current worst in the population, it replaces that
current worst; otherwise it is discarded. In all experiments,
the EA terminates after 10,000 generations.

The fitness of an ANN is its mean-squared-error (MSE)
over the training set. Model selection - i.e. the choice of
ANN from the training process that is felt most likely to
generalise well to unseen data, is done by simply choosing
the network that performed best on the testing set (which
had no other influence on the training process). Finally, all
results reported here are for the performance of this selected
model on the unseen set. In all experiments reported here,
the training set comprised 2010 data, the testing set com-
prised 2011 data, and the unseen set comprised 2012 data.

In the early part of this investigation we are primarily in-
terested in the potential accuracy of wind speed prediction
when additional data beyond historical wind speed (avail-
able from modern automated weather stations) are taken
into account. Specifically we consider cloud cover fraction,
humidity, barometric pressure, wind direction, temperature,
and visibility. For each of these (and for wind speed itself),
hourly data were available for the great majority of the hours
in each of 2010, 2011, 2012, from a weather station close to
the Findhorn ecovillage site.

In addition, concerning both wind speed-only, and addi-
tional data scenarios, we note that previous work has not
explored the adoption of change in wind speed as an input
to the ANN. For example, consider the task of predicting
wind speed at time T+42 (ws[T+2]), given as input the wind
speeds at times T and T+1 (ws[T] and ws[T+1]). Intu-
ition suggests that a worthwhile alternative to this approach
would be to encode the inputs instead as ws[T+1] - ws[T]
and ws[T+1]; i.e. the wind speed at T+1, and the change
in wind speed from T to T+1. This transformation of the
input would seem to present the ANN with a less onerous
task (i.e. a more navigable landscape) in discovering fea-
tures that may contribute to robust predictions. Hereafter,
we refer to this approach to presenting the data to the ANN
as the 'delta’ approach.

To explore these questions we report on a series of two fur-
ther experiments beyond the baseline experiments reported
earlier. The further experiments can be characterised as
follows:

1. ANNSs using historical wind speed data only, with in-
puts over both short term and long term historical win-
dows;

. ANNs using all available data types, but with inputs
over short-term historical windows.

ANNSs using two types of historical data — wind speed
and one other — for each of the additional types of data
considered.

When historical windows of two or more steps are in-
volved, we always use the ’delta’ approach, following prelim-
inary tests confirming that the ’delta’ approach was never
(with statistical significance) worse than the standard ap-
proach in this context. When there are only two historical
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Figure 2: Forecasting accuracy of evolved ANNs us-
ing only wind speed input data.

inputs, the first input was the difference in wind speed be-
tween times ¢t — 1 and ¢, and the second was wind speed
at time ¢. In general when the historical input window is N
hours, the Nth input was always wind speed at time ¢, while
the ith input (0 < ¢ < N) indicated the difference in wind
speed between times 7 + 1 and 4. . In all cases, we report
on separate experiments that predict H hours in advance,
where H ranges through 1, 2, 4, 8, 16 and 24.

4.2 ANNs: wind speed only

Two subsets of experiments were done to evaluate the per-
formance of evolved ANN windspeed prediction using only
historical wind speed data-points as inputs. Experiments
were done with historical input windows of size 2, 6 and 24
hours respectively

Results are summarised in figure 2. The plots show the
mean result of ten runs on the unseen year 2012 data, and
are contrasted with the best of the baseline methods (from
Figure 1), also showing the TOD line as reference. The
three experiments are difficult to separate in the plot, so
Table 1 provides the mean and standard deviation of the
error (absolute wind speed in metres per second) for the
configurations tested in this set of experiments. The best
mean result for each lookahead time is highlighted in bold.

Evolved ANNs with a 6-hour historical wind speed input



method 1 hr 2 hrs 4 hrs
2 inputs 1.3746 1.6435 2.0017
std 0.0096  0.0069  0.0062
6 inputs 1.3678 1.6373 1.9989
std 0.0044  0.0013  0.0012
12 inputs | 1.4596 1.6952 2.0267
std 0.0278  0.0196  0.0176
Baseline 1.4084 1.6718 2.0682
8 hrs 16 hrs 24 hrs
2 inputs 2.3966  2.5813 2.5788
std 0.0042  0.0022 0.0024
6 inputs 2.3989 2.5761 2.5948
std 0.0021 0.0054  0.0021
12 inputs | 2.3897 2.5868  2.6106
std 0.0104  0.0107  0.0081
Baseline 2.5115  2.7382 2.8591

Table 1: Accuracy for 1, 2, 4, 8, 16 and 24 hour
forecasts with evolved ANNSs using only wind speed
inputs, contrasted with best baseline, showing mean
and std of 10 trials.

window clearly seem to have the advantage over the 2-hour
and 12-hour windows. Intuitively it seems reasonable to ex-
pect that the extra information provided in a 6-hour window
is beneficial, while the 12-window presumably provides more
extra noise than extra signal in this context. However the
three further-ahead lookahead results are less clear cut than
the short term predictions, as is apparent from the larger
standard deviations. All cases perform significantly ahead
of the best baseline method.

4.3 ANNs: seven data types

In the first subset of these experiments, the ANNs had
7 inputs. These were the 7 values at time ¢ of the main
data types available in a typical automated weather station,
namely: cloud cover, humidity, pressure, temperature, visi-
bility, wind direction and wind speed.

In the second subset of these experiments, the ANNs had
14 inputs, covering the values at time ¢ and ¢ — 1 of the
seven data types. In the third subset of these experiments,
the ¢t — 1 value for each data type was replaced by its ’delta’
value —i.e. the value at time ¢ minus the value at time ¢ — 1.

Results are summarised in figure 3. The graphs show the
mean result of ten runs on the unseen year 2012 data.

Table 1 indicates the mean and standard deviation of the
error (absolute wind speed in metres per second) for the
configurations tested in this set of experiments. The best
mean result for each lookahead time is highlighted in bold.

These multiple-data-source tests provide mixed results,
seeming less effective than baseline for 1 and 2 hours ahead,
however the delta approach with 14 inputs (2 hours histor-
ical data, all data types) yields better mean results for the
4, 8 and 16 hour lookahead windows than the best of the
previous wind speed only tests.

4.4 ANNs: selected input combinations

Finally, in each of these experiments there were four in-
puts. Two of these were always wind speed at time ¢ and the
’delta’ wind speed between times ¢ and ¢ — 1. The other two
were similarly a time ¢ value and a delta value (value at ¢ mi-
nus value at t—1) for a specific other data type. These other
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method 1 hr 2 hrs 4 hrs
all-1 1.4104 1.666 2.0065
std 0.0131 0.0075 0.0062
all-2 1.3950 1.6507 1.9972
std 0.0181 0.0139 0.009
all-2d 1.4120 1.6508 1.9738
std 0.0263  0.0194  0.0083
Baseline | 1.4084 1.6718 2.0682
8 hrs 16 hrs 24 hrs
all-1 2.3792  2.5937  2.5981
std 0.0054  0.0049  0.0083
all-2 2.3701 2.5848  2.6022
std 0.0086  0.0063  0.0063
all-2d 2.3492 2.5716 2.5924
std 0.0092  0.0099  0.0097
Baseline | 2.5115  2.7382 2.8591

Table 2: Accuracy for 1, 2, 4, 8, 16 and 24 hour
ahead forecasts with evolved ANNs using all data
types, contrasted with best baseline, showing mean
and std of 10 trials.

data types ranged through cloud cover, humidity, pressure,
temperature, visibility and wind direction.

Table 3 indicates the mean and standard deviation of the
error (absolute wind speed in metres per second) for the
configurations tested in this set of experiments. The best
mean result for each lookahead time is highlighted in bold.

The wind speed and temperature evolved ANNs seem
more promising than the others at 1, 2 and 4 hours ahead,
with the best so far means at these lookahead times. It also
does relatively well at 8, 16 and 24 hours, however the wind
speed and pressure evolved ANNs seem to outperform it at
these further-ahead forecasts.

Since the experiments with temperature and pressure showed

more promising outcomes, two further experiments were per-
formed. In the first, we evolved ANNs with 6 inputs, in-
cluding 3 previous wind speed data points, and 3 previous
temperature data points. In the next, also with 6 inputs, we
used 2 previous data-points for each of wind speed, temper-
ature and pressure. The best mean result for each lookahead
time is highlighted in bold.



method 1 hr 2 hrs 4 hrs
Temperature 1.3542 1.6100 1.9581
std 0.0055  0.0054  0.0052
Cloud cover 1.3748 1.6412 1.9943
std 0.0068  0.0060  0.0036
Humidity 1.3692 1.6373 1.9889
std 0.0064  0.0038  0.0028
Visibility 1.3756 1.6418 1.9970
std 0.0090  0.0056  0.0043
Pressure 1.3700 1.6329 1.9802
std 0.0065  0.0039  0.0054
Wind direction | 1.3715 1.6394 1.9962
std 0.0031 0.0025 0.0039
Baseline 1.4084 1.6718 2.0682
8 hrs 16 hrs 24 hrs
Temperature 23734  2.5769  2.5844
std 0.0064  0.0055 0.0027
Cloud cover 2.3884 2.5775 2.5804
std 0.0018  0.0015 0.0024
Humidity 2.3759  2.5756  2.5808
std 0.0028  0.0023  0.0031
Visibility 2.3967  2.5811 2.5752
std 0.0063  0.0044  0.0018
Pressure 2.3657 2.5704 2.5764
std 0.0049  0.0063  0.0059
Wind direction | 2.3891 2.5742 2.5822
std 0.0087  0.0074  0.0019
Baseline 2.5115 2.7382 2.8591

Table 3: Accuracy for 1, 2, 4, 8, 16 and 24 hour
ahead forecasts with evolved ANNs using windspeed
and one other data type, contrasted with best base-
line, showing mean and std of 10 trials.

method 1 hr 2 hrs 4 hrs
6 inputs: ws + temp 1.3425 1.5906 1.9435
std 0.0054  0.0015  0.0021
6 inputs: ws + te + pr | 1.3462 1.6012 1.9424
std 0.0043  0.0040  0.0036
Baseline 1.4084 1.6718  2.0682
8 hrs 16 hrs 24 hrs
6 inputs: ws + temp 2.3672 2.5671 2.5835
std 0.0037  0.0032  0.0031
6 inputs: ws + te + pr | 2.3394  2.5675  2.5896
std 0.0042  0.0077  0.0079
Baseline 2.5115  2.7382 2.8591

Table 4: Accuracy for 1, 2, 4, 8, 16 and 24 hour
ahead forecasts with evolved ANNs using wind-
speed, temperature and pressure, contrasted with
best baseline, showing mean and std of 10 trials.
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along with 6-input evolved ANNSs including wind-
speed, temperature and pressure.

The 6-input wind speed and temperature evolved ANNs
show the best results of all methods tested in this article at
1 and 2 hour ahead forecasts, while the 6-input wind speed,
temperature and pressure evolved ANNs show the best re-
sults of all methods at 4, 8 and 16 hours ahead. Both of
these methods do relatively well at 24 hours ahead predic-
tion too, however neither outperforms the mean value for 24
hours shown by wind speed only with 2 inputs

We summarise selected results in figure 4, contrasting the
best of the two-data-type 4-input cases with these further
experiments, also showing the 6-input wind speed results.

S. SUMMARY, AND A FORECAST OF FU-
TURE WORK

In connection with a project that aims to optimise the use
of renewable energy in ecovillages (via intelligent systems
for alignment of supply and demand), we reported here on
the early stage of research in support of one element of the
project. This element was the prediction of wind speed in fu-
ture time windows (ranging from 1 to 24 hours ahead) using
weather station data. Using three years of data available for
a site very close to one of the ecovillages participating in the
ORIGIN project, we compared a set of baseline approaches
with evolved artificial neural network models. In particular,
we focus on the benefits in accuracy that may or may not
be available by using additional weather station data (such
as temperature, pressure, etc.) as inputs to the ANNs. Us-
ing such additional data has not been reported before (or,
not reported prominently enough for us to discover) in the
context of ANN-based prediction of wind speed.

Here, we tested a limited and eclectic choice of the many
possible combinations of inputs and outputs that could be
envisaged, focusing on simple combinations and ’extremes’.
This was in part to meet the GREENGEC workshop sub-
mission deadline with a coherent set of results, but also rep-
resents an initial broad survey of the performance profiles
available from the other data types, consideration of which
will help design ongoing experiments. We find that the use
of additional input data seems to have clear advantages over
wind speed alone. The best predictions (on average) for 1



and 2 hours ahead were achieved with a combination of wind
speed and temperature inputs, while the best medium term
predictions (4, 8 and 16 hours) were obtained from combin-
ing wind speed, temperature and pressure inputs. Inspec-
tion of the standard deviations suggest that the best 'with
temperature’ evolved ANNSs are significantly better than the
best 'wind speed only’ ANNs for shorter term predictions,
however standard deviations creep up as the lookahead time
increases and it is harder to assess significance without ad-
ditional experiments.

Finally, in ongoing work (as well as completing the current
study) we will more carefully consider the issues surround-
ing the relative costs of under and overestimating predicted
wind speed. In the ORIGIN context, predicted availabilty of
renewable energy in 4 hours (say) could lead to household-
ers delaying expensive bursts of consumption (e.g. electric
dryer) until the predicted window. If the prediction was
over-estimated, and for a time of day when large sections of
the community were hoping to capitalise on it, the cumula-
tive effect over several households would be unfortunate in
terms of their forced use of fossil fuel resources. Different
degrees of under and over-estimation also have differential
consequences owing to the nonlinear relationship between
wind speed and wind energy - this is especially important
at high wind speeds, where, above a particular threshold
of wind speed, most turbines are required to shut down.
One of the main reasons for employing EAs in developing
forecasting models is to enable the flexibility to differentiate
over such scenarios, by means of crafting suitable vectors of
objective functions that capture the key performance issues.
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