
Genetic Programming Enabled Evolution of Control
Policies for Dynamic Stochastic Optimal Power Flow

Stephan Hutterer
School of Engineering and
Environmental Sciences,

Upper Austria University of
Applied Sciences

Stelzhamerstrasse 23
Wels, Austria

stephan.hutterer@fh-
wels.at

Stefan Vonolfen
School of Informatics,

Communications and Media,
Upper Austria University of

Applied Sciences
Softwarepark 11

Hagenberg, Austria
stefan.vonolfen@fh-

hagenberg.at

Michael Affenzeller
School of Informatics,

Communications and Media,
Upper Austria University of

Applied Sciences
Softwarepark 11

Hagenberg, Austria
michael.affenzeller@fh-

hagenberg.at

ABSTRACT
The optimal power flow (OPF) is one of the central op-
timization problems in power grid engineering, building an
essential tool for numerous control as well as planning issues.
Methods for solving the OPF that mainly treat steady-state
situations have been studied extensively, ignoring uncertain-
ties of system variables as well as their volatile behavior.
While both the economical as well as well as technical im-
portance of accurate control is high, especially for power
flow control in dynamic and uncertain power systems, meth-
ods are needed that provide (near-) optimal actions quickly,
eliminating issues on convergence speed or robustness of the
optimization.
This paper shows an approximate policy-based control ap-
proach where optimal actions are derived from policies that
are learned offline, but that later provide quick and ac-
curate control actions in volatile situations. These poli-
cies are evolved using genetic programming, where multi-
ple and interdependent policies are learned synchronously
with simulation-based optimization. Finally, an approach
is available for learning fast and robust power flow control
policies suitable to highly dynamic power systems such as
smart electric grids.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods

Keywords
Policy Learning, Simulation Optimization, Dynamic Stochas-
tic Optimal Power Flow

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

1. INTRODUCTION
Operation of electric power grids, considered at an ab-

stract level, traditionally happens according to “load-
dependent generation”. Here, the demand caused by (do-
mestic, commercial and industrial) customers causes an elec-
tric load that can naturally not be influenced (in traditional
power grid operation schemes), but can be predicted to a
certain degree. Since the power-balance has to be main-
tained within a system, the generation has to be adapted
continuously. This scheduling of power supply units is a
central task in power grid operation [19].
In this context, several optimization problems have been
formulated in the past [11], while the general optimal power
flow (OPF) problem is probably the most important one.
OPF aims at finding a configuration of all controllable sup-
ply units within a system in order to meet power demand
at minimum financial costs, while maintaining several opera-
tional constraints. This OPF-based scheduling uses accurate
demand forecasts in order to derive power flow control ac-
tions in a predictive manner.
However, especially in the context of smart electric grids,
the volatility as well as uncertainty of power grid oper-
ations increases continuously while the implementation of
distributed devices enlarges the amount of switchable appli-
ances for power flow control. Thus, a scalable technology
is needed for so called dynamic stochastic optimal power
flow [10, 17]. Such a technology shall be proposed herein,
where an evolutionary simulation optimization procedure is
applied to learn flexible policies for power flow control, that
later provide fast and robust actions at runtime.
To give an overview, Section 2 states the formulation and
necessity of dynamic OPF, while discussing the approach of
learning flexible control policies. Section 3 illustrates how
such policies can be learned based on genetic programming,
while this developed technique will be applied to a practical
show case in Section 4. Finally, Section 5 provides conclud-
ing remarks.

2. DYNAMIC STOCHASTIC
OPTIMAL POWER FLOW CONTROL

Before motivating the solution to dynamic OPF problems,
for illustrating this optimization domain the reader shall be

1529

supplied with the formulation of the common OPF problem
which usually is applied to steady-state situations.

2.1 OPF Formulation
The standard OPF problem is defined to minimize the fuel

cost per hour of a power system in steady state conditions,
while fulfilling constraints for secure operation. The steady-
state OPF problem can be mathematically formulated as
follows [11, 19]:

min C(x, u)

subject to:

g(x, u) = 0,

h(x, u) ≤ 0,

where C(x, u) is the objective function for fuel cost mini-
mization, g(x, u) is the set of equality constraints and gives
typical load flow equations, h(x, u) provide the (inequality)
system operation constraints. The inequality constraints
h(x, u) represent the limits on physical power system equip-
ment as well as the limits created to ensure system security.
x and u reflect the vectors of dependent and independent
variables. Hence, x gives the vector of (dependent) system
variables: slack bus real power output PG1 , load bus volt-
ages VL, generator reactive power outputs QG and branch
power flows PB .
The vector u comprises (independent) control variables: gen-
erator voltages VG, generator real power outputs PG, trans-
former tap settings T and the output of shunt VAR com-
pensators QC . Hence, both vectors are expressed as:

xT = [PG1 , VL1 ...VLNL , QG1 ...QGNG , PB1 ...PBNB]

uT = [VG1 ...VGNG , PG2 ...PGNG , T1...TNT , QC1 ...QCNC],

with NL, NG, NB, NT and NC reflecting the number
of load buses, generator buses, branches, transformers and
shunt VAR compensators respectively.
The objective function is specified to minimize the total fuel
costs per hour over all generators. The specific costs Cn of
each individual unit are expressed typically by a polynomial
of degree 2:

C(x, u) =
NG∑

n=1

Cn =
NG∑

n=1

(an + bn ∗ PGn + cn ∗ P 2
Gn

),

with an, bn and cn representing each generation unit’s cost
coefficients.
While minimizing the objective function, the following in-
equality constraints have to be satisfied, considering gener-
ation capacities

Pmin
Gn

≤ PGn ≤ Pmax
Gn

, (1)

Qmin
Gn

≤ QGn ≤ Qmax
Gn

, (2)

as well as the voltage deviation being restricted to

V min
j ≤ Vj ≤ V max

j (3)

over all buses j = 1, ..., J and all generators n = 1, ..., NG.
Branch flows need to be constrained to

Pb ≤ Pmax
b (4)

for all branches b = 1, ..., NB for enabling secure distri-
bution grid operation.

Equations 1 - 4 define standard load flow constraints in
power grids that have to be satisfied for enabling valid and
secure power flow operation.

Additionally, the control variables for transformer tap set-
tings and VAR compensators need to be restricted to the
ranges:

Tmin
nt ≤ Tnt ≤ Tmax

nt , (5)

Qmin
Cnc

≤ QCnc ≤ Qmax
Cnc

, (6)

for all transformers nt = 1...NT and VAR compensators
nc = 1...NC.
The variable QCnc represents the reactive power injection
from the shunt-connected static reactive power (VAR) com-
pensators. These control-devices are applied for managing
real-power balance, hence, are related to voltage regula-
tion. The variable Tnt gives the tap position for transform-
ers with tap-changing mechanisms. This technology allows
the secondary-side adaptation of the actual number of used
turns along a winding, enabling voltage regulation at the
transformer output.

The traditional OPF formulation is about finding a steady-
state solution u for a given situation, thus, determining con-
crete values for all control variables. However, in dynamic
situations it would be more appropriate to have flexible con-
trol actions on hand that guarantee (near-) optimal power
flow control, rather than static values for control variables.

2.2 Necessity of Dynamic OPF
The solution of this OPF problem addresses exactly one

stationary state S(t), disregarding possible states in the near
future or possible uncertain conditions in the system. Con-
sidering the system exemplarily one time step later (S(t+1))
due to changing conditions of weather, customer-behavior
or any other influence, the power flow in the system would
change, hence, requiring a new solution to the optimal power
flow problem further necessitated by the non-linear behavior
of an electric power distribution system.
Such a new computation would need a robust and fast-
converging solution method, that guarantees quick support
with a new (near-) optimal solution, independent of system
complexity and starting point, which cannot be guaranteed
by traditional steady-state OPF methods [16]. However, this
forms a challenge to dynamic optimization methods.

2.2.1 Power Flow Control in Smart Grids
The necessity of providing dynamic OPF methods is fur-

ther substantiated by the steady increase of implementations
of smart grid applications. Here, the aim is to control a
huge amount of distributed devices (controllable loads, plug-
in electric vehicle charging infrastructures, distributed stor-
ages, small-scale renewable generation units) that mostly
show uncertain behavior. Thus, power flow control actions
need to be provided for numerous appliances (i.e. high
amount of control variables), that are fast in order to re-
act to volatile situations, enable the incorporation of uncer-

1530

tain behavior and are scalable to high amounts of devices.
Thus, a scalable technique is needed for dynamic stochastic
optimal power flow (DSOPF) control [10, 17, 18].

2.3 Policy-Based Dynamic OPF
The basic idea is to not re-optimize power flow control

actions each time the system changes (for example because
of changing weather or customer demand conditions), but
to provide some kind of function p(x) that supplies (near-)
optimal control actions to any arbitrary situation that may
occur, a so called policy. In actual approaches, this issue is
about value- or policy- function approximation [14], where
one has to assume that the structure of p(x) is obvious or
even can be obtained in some way.

Tentatively, we assume a fixed mathematical structure
p(i) that represents the policy, where the vector i contains
all relevant input variables for decision making. This policy
p(i) serves as optimal power flow controller and provides the
controllable unit respectively the grid operator with fast and
robust actions.
In order to determine such a policy, one has to discuss the
available variables that would need to be taken into account
when aiming at deriving valid power flow control decisions.
Considering the general OPF-problem as stated above, these
input variables i would have to comprise the following infor-
mation:

• Real and reactive load values of all buses;
PB1 ...PBJ , QB1 ...QBJ ,

• Real and reactive generation limits of all generators;
Pmax
G1

...Pmax
GNG

, Qmax
G1

...Qmax
GNG

,

• Polynomial cost coefficients of all generators;
a1...aNG, b1...bNG, c1...cNG,

• Real power flow limits of all branches;
Pmax
b1

...Pmax
bNB

,

• Voltage deviation limits of all buses;
V min
B1

...V min
BJ

, V max
B1

...V max
BJ

,

• Transformer tap setting limits;
Tmin
1 ...Tmin

NT , Tmax
1 ...Tmax

NT ,

• VAR compensators injection limits;
Qmin

C1
...Qmin

CNC
, Qmax

C1
...Qmax

CNC
.

All these variables need to be considered if one aims at
deriving a power flow control action that satisfies the OPF
formulation.

A control action (i.e. desired output of a policy) gives con-
trol values to independent variables. Since the controllable
variables for OPF as defined above are:

uT = [VG1 ...VGNG , PG2 ...PGNG , T1...TNT , QC1 ...QCNC],

for each of these variables one policy p(i) would have to
be learned, hence, a number of |u| = 2 ∗ NG + NT + NC
policies would be needed for policy-based dynamic (approx-
imate) optimal power flow control in this case.
While all these variables/policies are indeed interrelated,
they would need to be evolved synchronously in order to

maintain their interdependencies, making this optimization
process a hard task from a computational point of view be-
cause of the high number of interrelated solutions. Further,
the number of policies in this case directly grows with the
size of the considered power grid (size in means of: num-
ber of generators NG, number of transformers NT , etc.; i.e.
number of controllable units) which clearly builds a con-
flict with the requirement of building a scalable technology
for high amounts of controllable devices in smart grid envi-
ronments. Thus, an approach would be needed, where the
number of needed policies is independent of the power grid’s
size. For example it should be possible to derive a general
policy PG(i) that is valid for all generators within a system
and is able of considering each generator’s specific situation.
This can be achieve when using so called “abstract rules”.

2.4 Formulation of Abstract Rules
The approach of applying such abstract rules for evolv-

ing flexible policies has already been discussed in various
applications for smart grid control tasks [6, 7]. The aim
of these rules is to provide situation-dependent information
to controllable units, while gathering unit-specific informa-
tion from various needed system variables in a cumulated
manner. Hence, for instance a generation unit may use the
absrtact rule NLF (Neighborhood Load Factor) for con-
sidering the demand conditions within the neighbored area
instead of taking all the concrete active power load values of
related buses into account. Table 1 shows the set r of speci-
fied rules for OPF control. The rightmost column indicates
to which control variable a respective rule is important. Fi-
nally, this set of rules substitutes the system variables, thus
all the needed information for decision making is provided
by abstract rules.

When finally synthesizing control policies out of these
rules, the great advantage is achieved that such a policy is
completely generic since it depends on abstract information.
Hence, for all units in a system that perform control actions
on for instance real power injection (variable PG), only one
policy PG(r) needs to be learned. Since this policy takes
local information through its abstract rules, it derives unit-
specific actions tailored to the controllable unit’s individual
environment and needs. In the end, for policy-based OPF
control (related to above OPF definition) with abstract rule
synthesis only 4 policies have to be evolved, namely PG(r),
VG(r), T (r) and QC(r) respectively. This number is inde-
pendent of the considered system’s size, thus, this approach
fulfills the scalability requirement.

3. GENETIC PROGRAMMING ENABLED
SIMULATION-BASED EVOLUTION OF
POLICIES

At this point, the kind of information that OPF control
policies have to consider has been specified. Still, it is an
open issue how to evolve these policies such that they lead
to near-optimal control actions. In this work, genetic pro-
gramming is applied for synthesizing the final policies p(r)
out of abstract rules r. Since this synthesis is an optimiza-
tion problem where the aim is to derive performant policies
that output fast and robust control actions under uncertain
conditions, a simulation-based learning procedure is applied
similar to [6, 7].

1531

Table 1: List of Abstract Rules
Rule Explanation Variable
LLF Local Load Factor: active load at bus divided by maximum active

power output at bus
P

NLF Neighborhood Load Factor: sum of active load at directly con-
nected buses and their neighbors divided by maximum active
power output at those buses

P,V,Q,T

GLF Global Load Factor: sum of total active load in grid divided by
sum of maximum active power generation

P,V,Q,T

MARF Max Rating Factor: maximum MVAR rating of connected
branches divided by maximum MVAR rating of all branches

P,Q

MERF Mean Rating Factor: mean MVAR rating of connected branches
divided by maximum MVAR rating of all branches

P,Q

LCF Linear Cost Coefficient: linear cost coefficient of generator divided
by maximum linear cost coefficient of all generators

P

QCF Quadratic Cost Coefficient: quadratic cost coefficient of generator
divided by maximum quadratic cost coefficient of all generators

P

NRLF Neighboring Reactive Load Factor: sum of reactive load at directly
connected buses and their neighbors divided by maximum reactive
power output at those buses

V,Q,T

GRLF Global Reactive Load Factor: sum of total reactive load in grid
divided by sum of maximum reactive power output

V,Q,T

3.1 Introduction to Genetic Programming
Genetic programmin (GP) uses an evolutionary-inspired

heuristic search process for evolving computer programs of
manifold style [1, 9] (rather than any kind of binary/integer/
real-valued vector like standard genetic algorithms). Within
this work, such a computer program takes the appearance
of a structured tree, where terminal nodes represent rules
as defined before, that are combined together with arbi-
trary constants by a set of mathematical operators which
are incorporated by non-terminal nodes. The set of these ap-
plied mathematical operators builds the GP grammar. This
kind of solution representation allows arbitrary mathemati-
cal combination of abstract rules and thus is able of identi-
fying even complex (non-linear) coherences between rules.

3.2 Policy Synthesis
Figure 1 gives an exemplary GP solution (tree) that may

represent a policy for the control variable PG, i.e. PG(r). In
this case, the applied grammar consists of arithmetic func-
tions. Here, non-terminal nodes representing mathematical
operators are indicated in dashed style, while terminal nodes
containing either abstract rules or real-valued constants are
given in solid style. In this case, the policy would take the
load situation at neighboring buses (NLF), the global load
situation (GLF) as well as the linear costs of the considered
generation unit (LCF) in order to derive the real-valued con-
trol action on PG - i.e. the real power injection value of the
generator. Once more, all controllable units of same type re-
ceive the same policy, but since the policy takes unit-specific
information at runtime, individual control actions for each
unit (like for generator real-power injection in this case) are
provided.

3.3 Simulation-Based Evolutionary Optimiza-
tion

For learning GP policies, simulation-based optimization
according to [8] is applied for handling this problem. The

0.4GLF

LCF

*

/ -

*

PG

NLF

1.5

Figure 1: Exemplary Control Policy for Variable PG

central idea of this approach is the application of simulation
for evaluating the fitness of a solution candidate generated
by the optimization algorithm. The advantage of using sim-
ulation for solution evaluation is manifold [4]. In this work,
simulation is necessary to model the dynamic behavior of
the considered power system along a considered time inter-
val. Thus, with simulation the performance of policies is
not only evaluated with respect to a steady-state situation
S(t), but is simulated along different dynamic system states
S(t)...S(t + K). Further, with simulation it is possible to
integrate probabilistic influences into the model, which is
important for considering real-world uncertain conditions in
power flow control, enabling the evolution of not only accu-
rate but also robust control policies.

For modeling the power flow control in a dynamic and
uncertain environment based on a distribution grid model,
the power grid’s volatile states are simulated using MAT-
POWER [20] along a time-horizon of K = 96 discrete time
steps (Δk = 15 minutes, i.e. time horizon equals one day)
in order to create a dynamic environment. Here the demand
changes over time according to statistical profiles from power
grid operation, but is additionally randomized in order to
simulate real-world uncertain conditions. In each time-step,

1532

steady-state power flow computation is performed for simu-
lating the power grid’s response to certain policies’ actions,
where the stochastic variables (i.e. load values) are sampled
from respective distributions. With this power flow compu-
tation, in each state the objective function value as well as
the constraints satisfaction can be evaluated.

3.3.1 Formal Description
Within each simulated discrete time step, standard steady-

state security constraints as defined in the general OPF
problem (see Equations 1 - 6) need to be satisfied, the objec-
tive function shall be specified of minimizing financial costs
of policy-controlled power generation Cp over all NG gener-
ation units during all K simulated time steps:

min
K∑

t=1

NG∑

n=1

Cp(PGn,t, VG,t, Qt, Tt)

Since a dynamic case is considered where the power in-
jection at a generation site may vary along time, additional
ramping constraints need to be defined for variable PG in
order to ensure that this variation is within certain physical
limits. Thus,

∀n∀t : |PGn(t+ 1)− PGn(t)| ≤ ΔPGn,max (7)

Considering proportional penalization for constraint vio-
lation, the final fitness function is defined as:

min

K∑

t=1

NG∑

n=1

Cp(PG,t, VG,t, Qt, Tt) +w ∗ CV (t)], (8)

where the cardinality of w equals the number of consid-
ered constraints. Here, w contains each constraint’s weight
with respect to the objective function. The constraint vio-
lation CV (t) is the quadratic error of a constrained variable
exceeding the defined limits. The real power injections of
generators PGn implicitly result from the policies’ outputs
after power flow simulation in each time step.

3.3.2 Training & Test Scenarios
In order to make the policies robust to uncertain situa-

tions, the evaluation has to be performed within a volatile as
well as uncertain simulated environment. Therefore, in each
evaluation a load-profile is chosen randomly out of four dif-
ferent profiles which finally describes the power-grids behav-
ior along the simulated day. These profiles are given in Fig-
ure 2, building domestic (black solid), commercial (dashed)
as well as agricultural (grey solid) standard load profiles.
Additionally, a random load profile indicated by the grey
dotted line is generated that is only used for testing-reasons
lateron. Within each time step, the concrete load value at
each node in the system is additionally randomized by mul-
tiplying it with a random sample from N(0, 0.016), which is
a common assumption for demand prediction uncertainty.

For better understanding, this workflow when evaluating
a solution (i.e. set of policies) is illustrated in Figure 3.

After having optimized the policies, a proper test scenario
is generated for validating the best found solution on an ar-
bitrary volatile environment of the considered power grid.

1 12 24

0.4

0.6

0.8

1

Time [h]

R
el

at
iv

e
B

as
e

Lo
ad

Figure 2: Applied Demand Profiles for Distribution
Grid Simulation

Figure 3: Solution Evaluation Procedure

Therefore, the synthetically generated random-profile (dot-
ted grey line in Figure 2) is applied to the power grid model,
creating a completely new situation independent from the
load profiles that have been taken for training. Thus, the
policies’ robustness to highly volatile situations can be tested.

3.4 Evolution of Policies
Considering the problem formulation with special respect

to the fitness function (Equation 8), the issue arises that
this fitness depends on four policies (PG,t, VG,t, Qt, Tt), while
these policies are indeed interrelated (for instance its obvi-
ous, that the voltage control performed by the tap changer
T depends on the voltage control VG of the generator units).
Thus, it is not sufficient to evolve these policies one-by-
one, but they have to be evolved all at a time. Hence, a
coevolution-related scheme is necessary.
Coevolution is often essential when considering real-world
problems. Such problems naturally consist of distributed
entities that have own behavior but a global goal needs to be
achieved as result of their interactions, hence, coevolution is
strongly related to multi-agent systems [5, 13]. Here, coevo-

1533

lutionary algorithms have emerged that use parallelization
techniques for evolving disjunct subpopulations of different
species, such as with coevolutionary genetic algorithms.
Originally, in evolutionary computation two main paralleliza-
tion schemes have emerged, namely island models and diffu-
sion models [1]. However, these models evolve populations of
a single species, while individuals of this species exist within
different subpopulations. Contrary, the aim of coevolution-
ary GA is to realize the coexistence of several species (in this
case different control variables) that aim at a common goal
(such as minimization of generation costs). Another distinc-
tion has to be made between cooperative and competitive
coevolution [12, 15], while in this case clearly a cooperative
scheme lies on hand.

3.5 Proposing Coevolutionary Genetic
Programming

Numerous approaches for coevolutionary genetic
algorithms have been developed in recent years, many of
them realizing multi-agent or game-theoretic approaches for
matching parallelized populations [3]. Within this work, a
method is shown using a more straight-forward coevolution-
ary scheme, where a global fitness function is shared along
parallely executed genetic programming processes. The idea
is that n subpopulations X1...Xn are evolved within sepa-
rate processes of same population size i, where evolutionary
operations (mutation, parent selection, recombination) are
applied separately and independently from each other. Each
process evolves one of n policies using its individually defined
grammar. The only information that the processes share is
the common fitness of individuals belonging to the same so-
lution. Thus, a complete solution X consists of n partial
solutions (policies), i.e. X = {X1, X2, ...Xn}. This princi-
ple is shown Figure 4. When evaluating a solution candidate
X, all policies that belong to X serve as input to the simula-
tion model. After computing the respective fitness function
value, it is shared along all partial solutions.
While all other genetic operators are executed locally, sur-
vivor selection happens globally. Being realized by a propor-
tional selection scheme, complete solutions (such as a row
{X1.1, X2.1, ..., Xn.1} in Figure 4) are selected for replace-
ment, rather than making this selection within each process
independently. This is important regarding the nature of co-
evolutionary systems, where the fitness of a partial solution
is always an objective (global) measure depending on other
partial solutions, rather than a subjective measure.

X1

X1.1
X1.2

X1.i

…

X1.3

X2

X2.1
X2.2

X2.i

…

X2.3

Xn

Xn.1
Xn.2

Xn.i

…

Xn.3

…Pr
oc
es
s1

Pr
oc
es
s2

Pr
oc
es
sn

Solution 1

Solution n

Generation g

Generation g+1

Figure 4: Process Model for Coevolutionary GP

For realization, HeuristicLab1 is chosen as framework for
heuristic optimization offering sophisticated implementations
for genetic programming. Here, n separate processes are
started where fitness values are shared using MPI (Message
Passing Interface) in Windows OS.

4. EXPERIMENTS
For experimental validation, a dynamic stochastic OPF

shall be handled for the IEEE 14-bus test case. Model data
are taken from IEEE test case archive [2]. The model is im-
plemented in MATPOWER simulation toolbox. The tech-
nical outline of this model is given in Figure 5, where buses
with controllable units are annotated as follows: G ... Gen-
erator (variables P,V), Q ... VAR Compensator, T ... Tap
Changer

1

2

5

3

4

7 9

6

8

10

11

12

13

14

G

G

G

G

G,T

Q,T

T

Figure 5: Test Case Layout; G ... Generator, Q ...
VAR Compensator, T ... Tap Changer

For the genetic programming processes, the following pa-
rameter settings are applied as listed in Table 2. Further
details on these parameters can be obtained from literature
[1] respectively HeuristicLab.

Parameter Value
Maximum Generations 200
Population Size 400
Selector Proportional Selection
Mutation Probability [%] 15
Mutator Multi Symbolic Expression

Tree Manipulator 2

Crossover Subtree Swapping Crossover
Elitism No Elitism
Maximum Tree Depth 8
Maximum Tree Length 80
Tree Grammar Arithmetic Operators

Real-Valued Constants

Table 2: GP Parameters: All Test Cases

For testing the best found policies, a proper test environ-
ment is applied as discussed before, where the power grid

1http://dev.heuristiclab.com/
2Randomly choose from: Full Tree Shaker, One Point
Shaker, Remove Branch Manipulation, Replace Branch Ma-
nipulation

1534

is simulated with an arbitrary volatile load profile over the
considered 24 hours. In order to make the results compara-
ble, out of this simulation 10 discrete time steps (i.e. dis-
crete states) are selected. Within these time steps, the exact
steady-state OPF is solved in MATPOWER with interior
point solver. Than, the resulting objective function value
(i.e. fuel costs per hour) is compared to the objective func-
tion value that results from the best found policies’ actions
within these 10 test- states.

4.1 Results
The evaluation on the described test set is shown in Ta-

ble 3. For each state, the policies’ objective function value
and interior point solution’s objective function value are in-
dicated as well as their difference (relative error).

Time Step Flexible
Policy

Interior
Point

Relative
Error

1 8211.4 8151.5 0.0074
2 7288.2 7249.5 0.0053
3 4301.6 4256.8 0.0105
4 5157.2 5134.3 0.0045
5 5268.2 5246.5 0.0041
6 8020.7 7964.1 0.0071
7 8020.7 7964.1 0.0071
8 7732.2 7683.2 0.0064
9 6012.4 5991.8 0.0034
10 6705.8 6677.8 0.0042
Mean Relative Error 0.0060

Table 3: Results 14-Bus Dynamic OPF Control

From these results one can clearly derive, that the approx-
imate optimal actions that the policies deliver within each
situation are competitive with those that an exact OPF so-
lution provides when being re-optimized within each state,
where the mean relative error is only 0.6%.

At this point, it is important to mention that only 4 poli-
cies have been learned here for in sum 14 control variables
(5 generators with controls P,V, 3 transformer taps and 1
VAR compensator). If another distribution grid would be
considered with for example a higher number of control-
lable generation units, still only 4 policies would be needed
for learning dynamic OPF control policies on this power
grid. Thus, the technology of learning flexible control poli-
cies with abstract rules is highly scalable to applications
with lots of distributed control devices. Especially the syn-
thesis with GP allows the identification of complex nonlinear
relationships between the abstract rules, enabling the opti-
mization of powerful control policies. Considering future
applications, for example control policies could be evolved
for high amounts of controllable plug-in electric vehicles
when charging their batteries like in [7], or dynamic charg-
ing/discharging policies for distributed small-scale storages.

While Table 3 summerizes the performance of the achieved
solutions, the outlook of these best found policies should be
discussed as well:
Figure 6 gives the exemplary tree representation of the final
policy PG(r) for real power injection, while all 4 policies are
listed as algebraic equations. For making the equations more
readable, the acronyms of abstract rules are substituted by

their indices r1...r9 in the vector if rules r. This assignment
is given in Table 4. The respective constants within the
policies are rounded in order to make them more readable.

+

PG

*

0.5r1

1.93r7 1.65r1 -0.06

+

1.93r7 -0.261.57r1 /

-0.3r2 -0.39r6

Figure 6: Policy PG(r) for Real Power Injection

PG(r) = 0.5r1(1.93r7 + 1.65r1 − 0.06)∗
(1.57r1 + 1.93r7 +

−0.3r2
0.39r6

− 0.26)

VG(r) =
r8(1.763r8 − 0.328r9) ∗ 36.11

(1.81r8 − 0.32r9)(−17.84r8 + 106.31)

+ 0.92

Q(r) =
0.087r35

r3r4r8(0.36r25r3 − 13.04r2)
+ 1.28r4

+ 2r8 − 4.34r2

T (r) = 0.65r8

Variable Rule
r1 LLF
r2 NLF
r3 GLF
r4 MARF
r5 MERF
r6 LCF
r7 QCF
r8 NRLF
r9 GRLF

Table 4: Variables Assignment

Taking a look at PG(r), this policy takes the rules LLF
and NLF as needed information on the actual load situa-
tion in the grid, and additionally the cost information about
the generators, thus LCF and QCF . It seems that all other
information that is needed for making a valid action on the
real power injection can be gathered within the used con-
stants, avoiding additional usage of abstract rules.
The same holds for the other policies as well, that do not
need to take all provided information into account through
the whole vector r, but only need a subset of all rules. This
is a special ability of genetic programming, which performs
an implicit feature selection during the genetic search, which
enables evolving solutions of low complexity. This low com-
plexity is further enabled by using abstract rules instead of

1535

system variables, which gather the needed information for
making power flow decisions into single scalar values.

5. CONCLUSIONS
Future power flow control tasks in smart electric grids

require optimization methods that are capable of deriving
fast and robust control actions in dynamic and uncertain
environments for potentially high amounts of controllable
devices. Thus, the need for scalable technologies enabling
dynamic stochastic optimal power flows is fundamental.
This work proposes an approach for dynamic approximate
optimization, where flexible control policies are learned of-
fline that later provide (near-) optimal control actions at
runtime. One special ability of this approach is that respec-
tive policies are learned out of abstract information entities
- so called abstract rules - that make it highly scalable. The
learning procedure is realized using genetic programming,
where the synchronous optimization of multiple interrelated
policies is implemented using a coevolution-related scheme.
Since uncertainties of a complex power grid have to be taken
into account for evolving valid policies for real-world opti-
mization, simulation is applied as system representation that
allows to fully integrate the probabilistic system behavior
into the optimization process.
Finally, the proposed technique has been applied to a well-
know benchmark system, the IEEE 14-bus test case. Out
of this benchmark, a dynamic power system has been sim-
ulated for evolving policies. It has been shown, that for an
arbitrary set of discrete steady-state test states, the policies’
outputs lead to competitive power flow control actions when
comparing it to statically optimized exact solutions within
these states. Thus, a technology is available for accurate
and scalable dynamic stochastic optimal power flow control.

6. ACKNOWLEDGMENTS
The work described in this paper was done within the

Josef Ressel Centre for Heuristic Optimization Heureka!
(http://heureka.heuristiclab.com/) sponsored by the Aus-
trian Research Promotion Agency (FFG).

7. REFERENCES
[1] M. Affenzeller, S. Wagner, S. Winkler, and A. Beham.

Genetic Algorithms and Genetic Programming:
Modern Concepts and Practical Applications. CRC
Press, 2009.

[2] R. D. Christie. Power systems test case archive;
http://www.ee.washington.edu/research/pstca/, Mar.
2013.

[3] S. Ficici and J. Pollack. A game-theoretic approach to
the simple coevolutionary algorithm. In Proceedings of
the Sixth International Conference on Parallel
Problem Solving from Nature (PPSN VI).
Springer-Verlag, 2000.

[4] M. C. Fu. Feature article: Optimization for
simulation: Theory vs. practice. INFORMS Journal
on Computing, 14, 1977.

[5] D. Hillis. Co-evolving parasites improve simulated
evolution as an optimization procedure. Physica D:
Nonlinear Phenomena, 42(1-3), 1990.

[6] S. Hutterer, M. Affenzeller, and F. Auinger.
Evolutionary algorithm based control policies for

flexible optimal power flow over time. In Proceedings
of the EvoApplications 2013, Lecture Notes in
Computer Science (LNCS), volume 7835.

[7] S. Hutterer, F. Auinger, and M. Affenzeller.
Evolutionary optimization of multi-agent control
strategies for electric vehicle charging. In Companion
Publication of the 2012 Genetic and Evolutionary
Computation Conference.

[8] S. Hutterer, F. Auinger, M. Affenzeller, and
G. Steinmaurer. Overview: A simulation based
metaheuristic optimization approach to optimal power
dispatch related to smart electric grids. In Life System
Modeling and Intelligent Computing (LNCS 6329),
2010.

[9] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. The MIT Press, 1992.

[10] J. A. Momoh. Toward dynamic stochastic optimal
power flow. In J. Si, A. Barto, W. Powell, and
D. Wunsch, editors, Handbook of Learning and
Approximate Dynamic Programming, pages 561–598.
Wiley-Interscience, 2004.

[11] J. A. Momoh. Electric Power System Applications of
Optimization. 2nd Edition, CRC / Taylor & Francis,
2009.

[12] M. Potter and K. De Jong. A cooperative
coevolutionary approach to function optimization. In
Proceedings of the Third International Conference on
Parallel Problem Solving from Nature (PPSN III).
Springer-Verlag, 1994.

[13] M. Potter and K. De Jong. Cooperative coevolution:
An architecture for evolving coadapted
subcomponents. Evolutionary Computation, 8(1),
2000.

[14] W. B. Powell, H. P. Simao, and B. Bouzaiene-Ayari.
Approximate dynamic programming in transportation
and logistics: A unified framework. European Journal
of Transportation and Logistics, 1:237–284, 2012.

[15] C. Rosin and R. Belew. New methods for competitive
coevolution. Evolutionary Computation, 5(1), 1996.

[16] H. Wang, C. E. Murillo-Sánchez, R. D. Zimmerman,
and R. J. Thomas. On computational issues of
market-based optimal power flow. IEEE Transactions
on Power Systems, 22(3), 2007.

[17] P. J. Werbos. Adp: Goals, opportunities and
principles. In J. Si, A. Barto, W. Powell, and
D. Wunsch, editors, Handbook of Learning and
Approximate Dynamic Programming, pages 3–44.
Wiley-Interscience, 2004.

[18] P. J. Werbos. Computational intelligence for the smart
grid - history, challenges, and opportunities. IEEE
Computational Intelligence Magazine, 6(3), 2011.

[19] A. J. Wood and B. F. Wollenberg. Power Generation,
Operation, and Control, 2nd Edition.
Wiley-Interscience, 1996.

[20] R. D. Zimmerman, C. E. Murillo-Sanchez, and
D. Gan. Matpower - a matlab power system
simulation package;
http://www.pserc.cornell.edu/matpower/#docs, Mar.
2013.

1536

