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ABSTRACT

Look up Table (LUT) based Field Programmable Gate Ar-
rays (FPGAs) are commonly used in mobile devices due to
their efficient signal processing capabilities and flexibility to
be reprogrammed in situ. However the mechanisms which
enable a FPGA to be re-programmable make it require more
power than an Application Specific Integrated Circuit. In
this paper we consider the power reduction of a FPGA by
optimising the mapping the underlying boolean circuit onto
the LUT based FPGA with respect to cumulative switching.
We formulate the power minimisation problem as a combina-
torial optimisation problem. To tackle this NP hard problem
we propose the application of a local search method. Here
we introduce a complete a neighborhood function and ap-
ply heuristic simulated annealing in conjunction with the
objective function from [20] ’cumulative switching’. Our ex-
perimental results show a 42.96% average reduction in power
consumption compared to SIS based mapping and 27.44%
average reduction in power consumption compared to a ge-
netic algorithm.

Categories and Subject Descriptors

J.4 [Computer Applications]: Physical Sciences and En-
gineering—Electronics; B.7.1 [Hardware]: Integrated Cir-
cuits—Types and Design Styles

Keywords

Simulated Annealing, Evolutionary Algorithm, Power Effi-
cient, FPGA, LUT

1. INTRODUCTION
Logic circuits are a integral part of computer science and

are ubiquitous in everyday life. Many logic circuits are
implemented using Application Specific Integrated Circuits
which are developed for a specific purpose and once man-
ufactured their function is fixed. FPGAs are logic circuits
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with additional technology which allows them to be pro-
grammed after manufacturing and reprogrammed (depend-
ing on the implementing technology); this is ideal for a mul-
titude of applications including mobile and distributed com-
puting.

As mobile or distributed devices usually rely on a limited
power supply unit, such as a battery or renewable power
source it has become increasingly important to develop FP-
GAs which are exceptionally power efficient. The power
consumption of a FPGA can be broken down into static
power and dynamic power. Static power is consumed when-
ever there is power running through the circuit regardless
of activity. Dynamic power is consumed when the circuit is
active and accounts for 62% of total power consumption for
a Xilinx Spartan-3 device [25]. Table 1 outlines the power
consumption of various components.

Dynamic Power Static Power
Routing = 62% Config = 44%
Clock = 19% Routing = 36%
Logic = 10% Logic = 20%
Other = 9%

Table 1: Breakdown of power consumption of the
Xilinx Spartan-3 device [25]

By far the largest proportion of the power consumption
is the cost of dynamic routing which accounts for 38.44% of
the total power consumption of a Xilinx Spartan-3 device.
Power consumed by dynamic routing is dependent on the
switching activity of the routing edges which is dictated by
the switching activity of each logic block and the length of
each path. In the majority of modern FPGAs logic blocks
are implemented using Look Up Tables (LUTs) which take
kin inputs and return a single result.

There have been many algorithms developed which aim to
reduce the amount of power consumed by dynamic routing.
One of the most fruitful areas under consideration is the
computationally hard problem of mapping an input boolean
function (usually in the form of a boolean circuit) onto a
LUT based FPGA such that the power consumption is min-
imised.

In this paper we develop a simulated annealing based al-
gorithm which maps a boolean function onto a LUT based
FPGA such that the power consumed through dynamic rout-
ing is minimised. The vast majority of existing solutions
make use of greedy heuristic algorithms which have the dis-
advantage of often finding only locally optimal solutions
rather than the global optimum. Simulated annealing based
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algorithms have had significant success with other problems
which have similar properties and has found globally opti-
mal or near optimal solutions in an acceptable time period.
We anticipated that it can provide equally strong results for
our problem.
We begin the paper with an overview of relevant liter-

ature with a focus on algorithms which reduce the power
consumed by dynamic routing. We then formally define the
problem considered and briefly outline the power estimation
technique used to evaluate solutions. Finally we introduce
our Simulated Annealing algorithm which is tailored to the
problem at hand. We compare our results to both SIS map-
ping [21] and a genetic algorithm [20] and show that our
algorithm improves both of these results.

2. BACKGROUND
Boolean algebra was first proposed by George Boole in

1854 [3]. Boolean algebra was researched and developed
over many years and was finally applied to digital circuits in
1937 by Shannon [22]. This was utilised in the development
of FPGAs which were introduced in 1988 when Freeman filed
a US patent on behalf of Xilinx Inc. [11] which describes a
configurable logic circuit similar to modern day FPGAs.
Simulated annealing was presented as a operations re-

search global optimisation method by Kirkpatrick et. al. in
1983 [13] (and later independently by Ĉerny [6] in 1985). It
has since been applied to many combinatorial optimisation
problems and has been responsible for improving the upper
bound and finding optimal / near optimal results for many
hard problems where other algorithms have failed. For ex-
ample Steinhöfel, Albrecht and Wong [23] applied heuristic
simulated annealing to the job shop scheduling problem; in
the paper they showed that the algorithm could find op-
timal solutions for a number of benchmark problems and
improved the best known solution for several more. For a
good overview of Simulated Annealing algorithms, associ-
ated techniques and terminology see [1].

2.1 Low Power LUT based FPGA Mapping
By far the most vigorously researched area for reducing

the power consumption of LUT based FPGAs has been to
develop an algorithm which maps an input boolean func-
tion onto a LUT based FPGA. Farrahi and Sarrafzadeh [10]
initiated the research by first showing that the decision ver-
sion of the problem is NP complete even for simple classes
of circuits (e.g. 3 level circuits), they then extended this to
show that even restricted cases of the LUT minimization for
FPGA technology mapping are NP-complete [9].
Farrahi and Sarrafzadeh [10] considered mapping boolean

circuits onto LUT based FPGAs in 1994. The authors de-
veloped a heuristic algorithm (Power Min) which maps the
nodes into k feasible cones (which are analogous to k fea-
sible LUTs) whilst attempting to minimise average power
consumption. It is shown that the heuristic described can
reduce the power consumption by an average of 14.8% whilst
using only 7.1% more LUTs compared to an algorithm de-
signed to minimise area.
Wang and Kwan [26] suggested a heuristic mapping al-

gorithm with the aim of reducing the power consumption
whilst maintaining optimal area. The authors’ algorithm
first generates the LUT mapping which results in the least
number of LUTs possible; the algorithm then adjusts the so-
lution to hide the high transition paths inside LUTs which

results in reduced power consumption whilst maintaining
the number of LUTs. The algorithm reduces the power con-
sumption by 10.38% and maintains the number of LUTs.

Wang, Liu, Lai and Wang [27] proposed Power-Map; a
heuristic algorithm which relies on a limited cut enumeration
technique to generate many potentially good solutions. The
authors compare their Power-Map algorithm to the Power
Min algorithm from [10]; Power-Map reduced the power con-
sumption by 14.03% - 14.18% and the number of LUTs by
6.31% - 6.99% depending on then number of cuts.

Li, Mak and Katkoori [17] developed a multi objective
technology mapping algorithm which aims to reduce the
power consumption whilst ensuring that the circuit depth
is kept optimally small. The authors exploit the fact that
non critical LUTs can be altered without affecting the depth
of the circuit. PowerMap is compared to a minimum depth
mapping algorithm FlowMap; PowerMap reduces the power
consumption by 17.8% and the number of LUTs by 9.4%
with no depth penalty.

Anderson and Najm [2] developed a mapping algorithm
which relies on cuts to decompose the boolean circuit. The
authors also consider logic duplication which has been previ-
ously shown to be essential for minimum depth LUT circuits.
The algorithm is compared to FlowMap (which mimimises
depth) and FlowMap-r (which minimises depth whilst try-
ing to reduce the total number of LUTs) the researchers find
that their algorithm uses less power, area and connections.

Li, Mak and Katkoori [18] [16] develop a heuristic algo-
rithm which attempts to minimise the power consumption
of the mapping solution. The algorithm (Power Min Map
/ Power Min Map -d)) takes a global view when deciding
which cut to accept at any point, opting for the cut which
tends to reduce the power consumption of the overall circuit
rather than just the best local cut. A network flow min cut
method is used to compute the initial solution which is then
adjusted to further reduce the power consumption. Power
Min Map is compared to Power-Map [27]; the find that on
average it reduces the energy by 12.2% and the number of
LUts by 10.6%.

Pandey and Chattopadhyay [20] present the first stochas-
tic algorithm to address the problem of FPGA LUT circuit
mapping. The authors begin by reducing the problem to a
binate covering problem and then use a genetic algorithm
to search for a good solution.The authors compare their al-
gorithm to a basic SIS (Berkley, Robert Brayton) map and
find that they reduce the power consumption by 25.51%.
The authors claim that the algorithm in [27] only reduces
switching activity by 10% in comparison to the SIS solution.

Bucur, Stefanescu, Supateanu and Cupcea [5] design a
mapping tool which builds on the SIS circuit tool. The au-
thors approach differs from other in that it uses a Monte
Carlo simulation to estimate the energy consumption rather
than probability based approach which most publications
use. The tool attempts to minimise the power consump-
tion whilst also considering depth and area. The authors
present 3 different solutions and compare them to one an-
other, this makes it hard to compare this approach to those
listed above.

Chen, Wei, Zhou and Cai [8] have developed a heuristic
algorithm, PowerMap er which considers both power con-
sumption and edge count simultaneously. The algorithm
first generates all cuts for all nodes and maps a solution;
it then applies an area-edge recovery method ’depth slack
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distribution’ and finally it recomputes the edge cost. The
authors compare the algorithm to Power Min Map -d [16]
(Power = -8.5%, Area = -8.4%) and MacroMap (an area
optimal algorithm) [29] (Power = -18%, Area = -7%). Al-
though we must bear in mind that the figures quoted in
this paper are maximum improvement rather than average
improvement as quoted in other papers.

2.2 Dynamic Routing Power Reduction
After an initial LUT mapping solution has been gener-

ated another layer of optimization can take place; the func-
tion of some LUTs can be subtlety altered such that the
output switching is reduced but that the circuit as a whole
still implements the same function. Chen, Hwang and Liu
[7] were the first to look at this problem. They utilises
Roth Karp decomposition along with local search techniques
(Simulated Annealing and Kernigham-Lin) to modify the in-
dividual functions which each LUT implements whilst main-
taining the same circuit function. The authors found that
after applying their algorithms they achieved a greater than
9% average power reduction in comparison to the standard
SIS mapping. There are several other papers which present
solutions to the same problem [12] [14] [15] but for space
considerations we do not discuss them here.
Mashayekhi, Jeddi and Amini [19] introduced methods

which reduce switching within each LUT block by inserting
fake registers and then using a re-timing method; the au-
thors implemented their methods for two of ISCAS89 bench-
mark circuits and achieved a 25% power reduction over using
similar re-timing methods without power reduction consid-
erations.
Finally, Tinmaung, Howland and Tessier [24] developed

logic synthesis methods to reduce power consumption; they
achieved an average power reduction rate of 13% for Altura
Cyclone II devices compared to the standard SIS logic syn-
thesis methods.

3. PROBLEM DEFINITION
A boolean circuit is defined as a directed, acyclic graph

G(N,E) where N is a set of nodes and E is a set of edges.
Each node ni ∈ N is either a primary input, an output or
a logical gate, nodes are distinguished by their in and out
degrees (see table 2); each node has a transition density
td(ni) which is the number of times the signal changes in
unit time. Each directed edge ei ∈ E connects one node
to another. Figure 1A is an example of a boolean circuit.
The total estimated average power consumption of a boolean
circuit is shown in equation (1).

Pavg(B) =
∑nin

i=0
( 1
2
CinV

2
ddfitd(ni))+∑n

i=nin+1
( 1
2
(Cin + Cout)V

2
ddtd(ni))

(1)

Where Pavg(B) is the average power consumption of boolean
circuit B, nin is the number of input nodes, Cin and Cout

are the circuit capacitances, Vdd is the circuit voltage, fi is
the fan out of input i and td(ni) is the transition density
associated with node ni.
A Look Up Table (LUT) circuit can be defined as a di-

rected, acyclic graph C(N ′, L, k, E′) where N ′ is a set of
∗We state that the in degree of a logical gate is 2 and the out
degree is 1. This does not restrict the power of the circuit as
any unbounded gates can be decomposed into an equivalent
boolean circuit with bounded gates [28]

In degree Out degree
Primary input 0 ≥ 1
Output 1 0
Logical Gate 2∗ 1

Table 2: In degree and out degree of node types

Figure 1: A: boolean circuit. B: LUT mapping of A.

nodes, L is a set of LUTs and E′ is a set of edges. Each
node ni ∈ N ′ is either a primary input node or an output
node and has a transition density td(ni). Each li ∈ L is an
LUT; an LUT is defined as a special node which can rep-
resent any boolean function with up to kin distinct inputs
(where kin ≥ 2) and a single output i.e. an LUT node can
replace a boolean circuit (or sub circuit) with no more than
kin input nodes and one output node. Every LUT has a
transition density td(li) which represents the switching ac-
tivity of the LUT. Each directed edge ei ∈ E′ connects one
node or LUT to another node or LUT. The total estimated
average power consumption of a LUT circuit is described in
equation (2).

Pavg(L) =
∑n

i=0
( 1
2
CinV

2
ddfitd(ni))+∑l

i=0
( 1
2
(Cin + Cout)V

2
ddtd(li))

(2)

Where all terms are the same as in equation (1) with the
following additions: L is an LUT based circuit and l is the
total number of LUTs.

A boolean circuit can be implemented by a LUT circuit.
A single LUT can represent any boolean circuit (or sub cir-
cuit) with kin or less input nodes and one output node; a
LUT circuit can therefore implement the same function as a
boolean circuit by substituting sub circuits for LUTs. The
average power consumption of the equivalent LUT circuit
is equal to the boolean circuit which contains only the in-
put nodes and output node of each sub circuit. Figure 1B
shows an example of how boolean circuit 1A can be mapped
onto a LUT circuit where kin = 4 and the grey areas rep-
resent LUTs. A LUT circuit is considered to have mapped
a boolean circuit if the LUT circuit implements the same
function as the boolean circuit.

We wish to find a k feasible LUT mapping of any boolean
circuit such that the average expected power consumption
is minimised.

4. SIMULATED ANNEALING
In this section we describe the simulated annealing al-

gorithm which is applied to the problem described above.
We begin by outlining a general homogeneous simulated an-
nealing algorithm and a basic implementation of a simulated
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annealing algorithm (Algorithm 1) which incorporates all of
the features discussed in this section.
A simulated annealing algorithm attempts to find an opti-

mal (or at least good approximate) solution to a hard prob-
lem by searching the solution space using local moves. Each
time a local move is made the new solution is evaluated
according to the objective function. If the new solution is
better than the current solution it is accepted, if not the new
solution is accepted according to the equation (3).

a = e
f(c)−f(n)

c(k) (3)

Where a is the probability the solution will be accepted, f()
is the objective function, c is the current solution, n is the
new solution and c(k) is the current temperature.
Equation (3) relies on c(k) which is defined as the current

temperature but more accurately it is the temperature at
step k (which in equation (3) is the current step). The tem-
perature is defined in 2 parts, c(0) which is the starting tem-
perature and c(k) which recursively defines the temperature
at any step k > 0. c(k) also defines the cooling schedule.
We have chosen to define c(k) (equation (4)) using a cool-

ing schedule which has been shown to have be very successful
for similar problems. Literature suggests that c(0) should be
set such that even the worst possible move has a high prob-
ability of being accepted; this depends on the problem being
considered.

c(k) = c(k − 1) ·
1

b
(4)

Where b is an algorithm parameter and k is the step of the
algorithm.
The temperature is lowered at each iteration of the algo-

rithm according to equation (4) until c(k) < c(final) where
c(final) is the threshold. The threshold should be set such
that there is a very low possibility that even the least bad
move will be accepted; this again depends on the problem
being considered.
As we are considering the homogeneous simulated anneal-

ing model we perform a number of local moves at each tem-
perature rather than adjusting the temperature after each
move. The length of the Markov chain (number of moves
made and accepted) at each step is determined by equation
(5).

Lc = hη (5)

Where Lc is the number of moves accepted, h is an algorithm
parameter η is the size of the neighborhood.
Finally we require a complete local move set and the

neighborhood function. We define a complete moves set for
our problem in the section below.

4.1 Move Set and Neighborhood
In this section we define a complete move set which allows

us to transform one kin feasible LUT mapping to any other
kin feasible LUT mapping through a series of local moves
and describe a method to evaluate the energy consumption
of the new covering.

4.1.1 Slightly Restricted Boolean Circuits

We begin by considering a slightly restricted version of a
boolean circuit where each input node may have only one

Algorithm 1 Simulated Annealing

bestSol = currentSol = a random solution
k=0
while c(k) > c(final) do

moveCount = 0
while moveCount < Lc do

newSol = LocalMove(currentSol)
if newSol is accepted by equation (3) then

moveCount++
currentSol = newSol
if f(currentSol) < f(bestSol) then

bestSol = currentSol
end if

end if
end while
k++

end while
Return bestSolution

output, see table 3 (the reasoning behind this will become
apparent later). We begin with some basic definitions.

In degree Out degree
Primary input 0 1
Output 1 0
Logical Gate 2 1

Table 3: In degree and out degree of node types

Definition 1. Every node in a boolean circuit has a flag
which represents if the outgoing edge is cut or uncut; where
all input nodes and the output node must be labeled ’cut’.
The state of a boolean circuit is the list of node flags.

Definition 2. A kin Feasible Partition is a boolean cir-
cuit which is divided such that each section can be imple-
mented by a single k input LUT. A partition can be repre-
sented by a state.

A boolean circuit with l logical gates has 2l different states
but not all of these correspond to a kin feasible partition.

Local Move Set 1. Given a boolean circuit and a state
which represents a kin feasible partition: pick a single node,
which does not have to be cut (i.e. an input or output node)
and invert the flag, this gives 2 distinct moves:

• Cut node: flip the flag on a node from uncut to cut

• Uncut node: flip the flag on a node from cut to uncut

If the resulting state corresponds to a kin feasible partition
then the move is valid.

To make a valid move we can flip a random flag and then
check the validity. We can check if the resulting state is
valid in O(l) time (where l is the number of logical gates)
using a basic tree traversal but there is potential to improve
the speed through multi-threading; this could potentially
increase the speed by a factor of c (where c is the number
of cut logical gate nodes) but the worst case bound remains
the same.

Alternatively we can compute all possible moves which
will result in a valid state in O(l) time using a simple BFS
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based algorithm. Each time we apply a move we can main-
tain the possible moves lists in worst case time O(l); al-
though in the majority of situations it it much quicker. In
our implementation we have chosen to compute and main-
tain the list of valid moves as this only requires at most O(l)
computation time per accepted move and has been very ef-
ficient in practice.

4.1.2 Completeness

For the Local Move Set 1 to be complete over the set
of restricted boolean circuits we need to show that any kin
feasible partition can be transformed into any other kin fea-
sible partition using a series of local moves. To simplify this
problem we can consider the following sub problems:

1. Is the move set directly reversible?

2. can we use the local move set to transition from an
initial k feasible partition p0 where all nodes are cut
to any other kin feasible partition?

If we can prove that the both of the above are true then we
have shown that we can move from any kin feasible partition
to any other k feasible partition.
Showing that move set 1 is reversible is trivial as cut and

uncut are the exact opposite. We begin in kin feasible parti-
tion sx make a cut (or uncut) node move by flipping the flag
on node ni and transition to another kin feasible partition
sy, if the new partition is not kin feasible then the move
is not valid. We know that by making the opposite uncut
(or cut) node move by flipping the flag on node ni we must
transition back to the original partition sx; hence move set
1 is directly reversible.

Definition 3. p0 is the state where all nodes in a boolean
circuit are cut, this corresponds to a kin feasible partition
where each node is implemented by a separate LUT.

We begin by further simplifying the problem by consid-
ering any kin feasible partition as a combination of boolean
circuits with kin ≥inputs where all logical gates are uncut,
i.e. they form a single kin feasible LUT. This means that
without loss of generality we can just consider the situation
where we take a boolean circuit with up to kin inputs in
state p0 and use Move Set 1 to transform it into state p1,
this will prove that the move set is complete.

Definition 4. p1 is the state where all logical gate nodes
in a boolean circuit are uncut, if there are kin or less inputs
this corresponds to a kin feasible partition where all nodes
are implemented in a single LUT.

Lemma 1. There exists a chain of ’uncut’ moves (swap-
ping an node from cut to uncut) which can transform a
boolean circuit with kin or less inputs from state p0 into
state p1

Lemma 2. A boolean circuit as defined in section 1 which
has n−1 logical gates must have n input nodes and 1 output
node

The boolean circuit that we define in section 3 adhere to a
tree structure and a tree with n leaves will have n − 1 non
leaf nodes where one is the root, therefore lemma 2 must
be true. (Alternatively: if we have n input nodes and each

Figure 2: A diagram which shows how a complex
partition can be considered a combination of p1 par-
titions

logical gate has 2 inputs and 1 output then we will require
n− 1 logical gates to connect all of the inputs.)

Lemma 2 shows that the number of inputs is connected to
the number of nodes; we know if the maximum number of
input nodes allowed is less than or equal to kin then we can
have at most kin − 1 logical gates. If the maximum number
of logical gates is kin − 1 then any intermediate states must
have less then kin − 1 logical gates and therefore less than
kin inputs. i.e. a sub tree cannot have more leaves than
the original tree. We can therefore use the uncut move to
transition a boolean circuit from state p0 to state p1.

We have proved that we can transition a boolean circuit
from state p0 to state p1 using move set 1 and that move
set 1 is reversible, hence we have proved that the move set
1 must be complete as it allows us to access all possible k

feasible partitions.

4.1.3 Unrestricted Boolean Circuit

We have proved in Section 4.1.2 that Move Set 1 is com-
plete over our initial restricted definition of a boolean cir-
cuit. We now consider the original boolean circuit definition
where each input node has unrestricted fan out.

Move Set 1 is not complete over the unrestricted definition
of a boolean circuit. This is because Lemma 2 cannot hold
as nodes can now share input nodes. Therefore a partition
may have more than k − 1 nodes. To account for this we
include 2 additional moves which are defined in Local Move
Set 2.

Local Move Set 2. Given a boolean circuit and a state
which represents a kin feasible partitioning: pick both chil-
dren of a node, if the children are not marked that they
should always be cut and are either both cut or both uncut
then we can invert both flags, this gives 2 distinct moves:

• Cut Children: flip the flag on the nodes from uncut to
cut
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• Uncut Children: flip the flag on the nodes from cut to
uncut

If the resulting state corresponds to a kin feasible partition
then the move is valid.

We can use an extended BFS based algorithm to produce
a list of all valid moves in O(l) time. In the following section
when we refer to Local Move Set 2 we are implicitly referring
to any move which is valid over Local Move Set 1 or 2.

4.1.4 Completeness

In order to prove the completeness of Move Set 2 we need
to show that:

• the move set is reversible?

• the move set works in situations where Lemma 2 does
not hold?

In the above section we showed that the cut and uncut
node moves were reversible very simply. This case is very
similar as we are just applying 2 cut node moves at the same
time and hence the logic remains the same. We can only use
a cut (or uncut) children move if the resulting partition is
kin feasible and by applying the opposite move we transition
back into the original kin feasible partition. Hence cut and
uncut children are reversible.
For Lemma 2 to not hold the number of nodes must be

greater than or equal to the number of inputs. This can only
happen when at least one input node has a fan out greater
than 1 and more than one of the fan out edges are inputs of
the same LUT.

Definition 5. S is a set of boolean circuits in a kin feasi-
ble partition where at least one section (LUT) has kin input
nodes and at least kin logical gates, i.e. the set of kin feasible
partitions where Lemma 2 does not hold.

Lemma 3. There exists a boolean circuit b1 ∈ S in state
s1 which corresponds to a k feasible partition with the set of
input nodes I, the set of logical gates L and a single output
node o where |I| ≥ |L|.

We know that Lemma 3 must be true as Figure 3.4 is an
example of this.

Lemma 4. There exists a boolean circuit b1 in a k feasible
partition s1 from lemma 3. If both child nodes of the output
node o are cut then the resulting partition will also be kin
feasible.

The children of o (which we label ol and or) may be input
nodes or logical gates; this gives 3 distinct possibilities:

1. ol is an input node and or is a logical gate

2. ol is a logical gate and or is an input node.

3. Both ol and or are logical gates

Note that we have omitted the case where both oleft and
oright are input nodes as this would require there to be only
one logical gate (which is also the output node) and for
lemma 2 not to hold then either kin < 2 or both inputs
must be the same which renders the logical gate redundant.
Case 1 and 2 are equivalent as they both contain one input

node and one logical gate. The description of a boolean

circuit states that an input node must be cut so only the
logical gate needs to be cut and therefore we apply the cut
node move. By cutting the logical gate node we are left with
a new partition with 2 sections; the first contains only one
node o and the second contains all other logical gates. The
second section (containing all logical gates apart from o) has
an input set I ′ ⊆ I therefore the number of inputs can be
at most kin and the partition is kin feasible.

In case 3 both children are logical gates and hence they
both need to be cut and we must apply the cut children
move. Once both cuts are applied we reach a new partition
with 3 sections; the first contains only o, the second contains
the sub circuit attached to ol and the third contains the
sub circuit attached to or. The first section can have only
2 inputs and hence must be kin feasible. The second and
third may have between 1 and |L| − 1 logical gates in each
sub circuit, each section has an input set which we will label
Il and Ir where Il ⊆ I and Ir ⊆ I and Il ∪ Ir = I. As each
section may have at most |I| inputs the partition must be
kin feasible.

We have shown that all cases lead to a new kin feasible
partition and hence lemma 4 must be true. We can now
apply lemma 4 recursively to decompose a circuit from par-
tition s1 to partition s0 (as is shown in figure 3); as we have
shown that the move set is reversible we can state that the
move set is complete.

Figure 3: Repeated application of Local Move Set 2

4.2 Simulated Annealing Parameters
In this section we formally define the parameters used in

our simulated annealing algorithm.
The starting temperature is set such that any move should

be accepted with a high probability. We calculate this by
rearranging the acceptance probability to make the c(0) the
object:

a = e
f(c)−f(n)

c(k) → c(0) = ∆w

ln p
(6)

Where ∆w is the increase in the objective function when
the worst possible move is made (which can be simply com-
puted in O(l) time before the simulated annealing algorithm
begins) and p is the probability which the move should be
accepted with. When p is set to 0.999 (i.e. ≤ 0.01% chance
that the move would not be accepted) the equation becomes:

c(0) = 1000∆w (7)
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The algorithm stops looping once the temperature drops
below a threshold at which point it is unlikely (< 0.05) that
even the least bad move would be accepted. The definition
of the problem is such that the least bad move is never very
bad so requiring that this has less than a 5% chance of being
accepted gives the algorithm ample time to ensure the algo-
rithm has not halted during a gradient decent. This again
is defined by rearranging the acceptance criteria equation:

a = e
f(c)−f(n)

c(k) → c(final) = ∆l

ln p′
(8)

Where c(final) is the threshold, p′ is the probability that
the current solution will be accepted and ∆l is the increase
in cost cause by the least bad move possible. When we set
p′ to 0.05 we get the following equation:

c(final) = 0.33381∆l (9)

In the general simulated annealing definition above we
define the c(k) (equation (4)) and Lc (equation (5)) both
of which take additional parameters. The parameter b from
equation (4) is set to be a small number such that the cooling
is slow, for our tests we experimentally set b = 2. The
parameter h from equation (5) is set such that the number
of moves at a given temperature is sufficiently large, for our
tests we experimentally set h = 20.

4.2.1 Implementation and Analysis

Our simulated annealing algorithm can be implemented
very efficiently which is essential due to the number itera-
tions the algorithm requires. We outline the running times
of various parts of our simulated annealing algorithm in Al-
gorithm 2. The only possible point of contention is that it
takes up to O(n) time to update the list of possible moves,
our analysis shows that in the majority of cases this can be
achieved in small constant time but for small circuits it is
possible that this takes O(n) as one local move can have
ramifications for the entire circuit. When this is the case it
is highly likely that the the value of n is sufficiently small
that the algorithm can still compute all possible moves in a
very short time.

Algorithm 2 Simulated Annealing Analysis

Generate random solution - O(n)
Evaluate initial solution - O(n)
Calculate all possible moves - O(n)
while temperature > threshold do

while movesMade < Lc do
Pick random move - O(1)
Generate new solution - O(1)
Evaluate new solution and possibly accept - O(1)
Update list of possible moves - O(n)

end while
end while
Return Best Solution

5. RESULTS
For our experiments we implemented the Simulated An-

nealing algorithm using Python and tested with a combina-
tion of randomly generated and MCNC benchmark boolean
circuits. We utilized the MVSIS [4] strash command to
convert the MCNC circuits (in blif format) into 2 bounded

Circuit SIS GA SA Percentage
Misex2 3.59 2.85 2.37 66.01% 83.16%
Sao2 8.36 7.24 5.22 62.44% 72.10%
Con1 1.53 1.19 0.49 32.02% 41.17%
5xp1 2.24 1.71 1.24 55.36% 72.51%
Rd53 4.32 3.05 2.50 57.87% 81.97%
Z4ml 6.98 5.56 4.72 67.62% 84.89%

Average 57.04% 72.56%

Table 4: Results Comparison

AND2 & INVERTER boolean circuits which were then saved
as ’.bench’ files.

In order to compare our results with those from Pandey
et. al. and SIS we present our findings in terms of cumulative
switching; which is directly related to power consumption of
a circuit. The switching of a signal calculated using equation
(10) which is quoted from [20].

2 · p(s) · (1− p(s)) (10)

Where p(s) is the probability of signal s begin 1.
We initialized our simulated annealing algorithm with b =

2 and h = 20 and map the input boolean circuits onto LUTs
with kin = 5. Each test is ran once until completion and the
best found solution is reported. The genetic algorithm from
[20] took an average of 3.2 seconds to produce the results in
Table 4. Our simulated annealing algorithm used consider-
ably more time to produce our results (2 1

4
hours for 5xp1)

but they provide such a great reduction in power consump-
tion that we consider this to be a reasonable time cost.

In table 4 we report the results from our experiments along
side the results for SIS and the Genetic algorithm quoted in
[20]. We can see that as expected our SA based algorithm
has the ability to severely reduce the power consumption of
SIS; in the case of circuit Con1 by 67.98% and by an average
of 42.96%. Furthermore we see that the SA algorithm has
reduced the power consumption of the genetic algorithm by
an average of 27.44% and in the case of Con1 by 58.83%.

6. CONCLUSIONS
In this paper we have formally defined the problem of low

power LUT FPGA mapping as a combinatorial optimisa-
tion problem. We introduced a local move set which has
been shown to be complete for traversing all solutions in
our problem definition. Experimental results with our pro-
posed simulated annealing procedure have been compared
to two alternative approaches and demonstrate that the SA
algorithm can produce better results than both. Most no-
tably our results decrease the cumulative switching (which
is analogous to power consumption) by up to 27.44%. These
results motivate further investigations of simulated anneal-
ing in combination with more tailored cooling schedules. In
future research we plan to analyse the convergence proper-
ties of SA for the problem and to implement a wide range
of alternative local search algorithms for a comprehensive
comparison.
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