
Extended Rule-Based Genetic Network Programming

Xianneng Li
Graduate School of Information, Production and

Systems, Waseda University
sennou@asagi.waseda.jp

Kotaro Hirasawa
Graduate School of Information, Production and

Systems, Waseda University
hirasawa@waseda.jp

ABSTRACT
Recent advances in rule-based systems, i.e., Learning Clas-
sifier Systems (LCSs), have shown their sequential decision-
making ability with a generalization property. In this paper,
a novel LCS named eXtended rule-based Genetic Network
Programming (XrGNP) is proposed. Different from most of
the current LCSs, the rules are represented and discovered
through a graph-based evolutionary algorithm GNP, which
consequently has the distinct expression ability to model and
evolve the “if-then” decision-making rules. Experiments on
a benchmark multi-step problem (so-called Reinforcement
Learning problem) demonstrate its effectiveness.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

General Terms
Algorithms

Keywords
learning classifier systems, genetic network programming,
XrGNP

1. INTRODUCTION
Learning Classifier System (LCS) [1] is a research branch

of evolutionary algorithm (EA) which merges it with differ-
ent fields of machine learning, i.e., reinforcement learning
(RL) and supervised learning, within one whole.
In this paper, a novel LCS named eXtended rule-based

Genetic Network Programming (XrGNP) is proposed. D-
ifferent from the existing LCSs, the rules are formulated
based on a graph-based EA – Genetic Network Program-
ming (GNP) [2, 3] – using its distinguished directed graph
structures. XrGNP can be considered as a mixture of two
msot famous LCSs styles, i.e., Pittsburg-style and Michigan-
style, since each individual of XrGNP includes a set of rules
as Pitt-style and its rule base is used in Mich-style. However,
thanks to the unique and fixed structures of GNP, XrGNP
can efficiently model and recombine the rules within its chro-
mosomes and never cause the bloat problem [2] in variable-
length GA based Pitt-style and S-expression based LCSs.

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

On the other hand, each chromosome is evaluated as the s-
tandard EA, therefore, eventually XrGNP has much simpler
fitness design than the Mich-style LCSs.

2. EXTENDED RULE-BASED GNP
XrGNP and the existing LCSs share much conceptual

similarity, however, the major distinction arises from many
microscopic parts, including the knowledge representation,
knowledge discovery, credit assignment and action selection.

2.1 Knowledge representation
XrGNP originates from a graph-based EA named GNP

[2, 3], which shows higher expression ability than that of
GA and GP. GNP develops a directed graph structure con-
sisting of judgment/processing nodes to model the complex
systems. By separating judgments and processing, GNP can
efficiently evolve the compact programs by only selecting the
necessary judgments and processing. Such a property of se-
lection by necessity exactly makes GNP an efficient knowl-
edge generator. The rules are defined by a sequence of node
transitions. A rule consists of a set of successive judgment
functions with their results, and a processing function indi-
cating the action.

2.2 Knowledge discovery
The rules are extracted from the elite individuals in each

generation and saved in the rule-pool, which indicates that
the rule-pool is incrementally extracted during evolution,
allowing it to potentially obtain much more knowledge. In
comparison with the classical LCSs, the evolution of GNP
allows XrGNP to perform in more efficient way to recombine
the rules since the directed graph omits the # “don’t care”
symbol in its genotype, which reduces the No. of alphabets
to be considered in each attribute.

XrGNP proposes a niching GNP (NGNP) to allow more
diverse rules discovered. NGNP applies the fitness sharing
to find individuals with not just high quality but also distinct
structures. In every generation, the raw fitness fp of individ-
ual p is adjusted by: f ′

p = (fp)
β/mp, where β ≥ 1 is the scal-

ing factor and mp is the niche count estimating the crowding

of p comparing with the others: mp =
∑N

q=1 S(dpq). Here,
N is the population size, dpq represents the distance between
individual p and q, and S is the sharing function measuring
the similarity between two individuals:

S(dpq) =

⎧⎪⎨
⎪⎩

1−
(

dpq
σ

)μ

if dpq ≤ σ,

0 otherwise.

(1)

155

The niche radius σ denotes the threshold of acceptable dis-
tance and μ is a constant for regulating the shape of S. To
measure the similarity between two individuals, Levenshtein
distance is selected as the metric.
With NGNP, XrGNP is allowed to not just discover rules

from the single elite individual e, but also from the other
individuals with high raw fitness and long distance between
them and e, hence more diverse rules found.

2.3 Credit assignment
XrGNP performs the similar procedure of Mich-style to

utilize the knowledge, in which the rules compete, comple-
ment and cooperate. A novel RL-based credit assignment
method is proposed. This method is inspired by a recent
work [4, 5, 3] which has shown the successful ability to i-
dentify the quality of node connections of GNP. The state
and action space of RL is defined by the branch and nodes
of GNP. Therefore, a state-action pair (s, a) corresponds to
a node connection from branch s to node a. The updating
algorithm of Q values is based on Sarsa Learning (Sarsa) [6]
which follows the true experience of the agents to update
the Q values. As a result, the good state-action pairs will
be rewarded higher Q values and the bad ones will be as-
signed lower Q values, which allows us to explicitly judge
the quality of each (s, a).
Finally, the credit assignment to the rules of XrGNP is

performed using the Q values, in which the credit of each
rule is the average of the Q values of its node connections.

2.4 Action selection
The action selection is carried out by calculating the aver-

age matching degrees. First, the match set MS by grouping
all the rules whose conditions match the environment d is
built. The average matching degree of each action a is cal-
culated by: ma(d) =

∑
r∈MSa

credit(r)/|MSa|. where MSa

is the match set of a. The final action a∗ is the one with the
highest average matching degree among all actions.

3. SIMULATIONS
XrGNP is applied to a benchmark multi-step problem –

Tileworld [3]. Tileworld consisting of a grid of cells on which
various objects exist is a widely-used testbed to testify the
performance of intelligent agents. In Tileworld, each agent
is capable of judging the cells around it and take the actions
for movement. The objective of this problem is to find the
appropriate controllers that allow the agents to push the
tiles into the holes 1) as many as possible and 2) using as
fewer steps as possible, or 3) push the tiles towards the holes
as close as possible if there are remaining tiles in a limited
steps. The details of this problem can be found in [3]. The
reported results are the average over 30 independent runs.
The fitness curves of each algorithm are plotted in Fig.

1.(a). To evaluate the performance of knowledge discovery,
a simple metric is reported: the average number of extracted
rules per generation. Two variants of GNP-RA (an early
version of XrGNP with only standard GNP) are selected for
comparison with the proposed XrGNP, including the GNP-
RA1 only extracting rules from the elite individual e and
GNP-RA2 not just discovering rules from e but also the
second best individual. Consequently, the effectiveness of
NGNP for finding the high-quality diverse individuals can be
verified. The results in Fig. 1.(b) confirm that with NGNP,
XrGNP performs in the most efficient way to discover rules.

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25 30

Fi
tn

es
s

No. of fitness evaluations (×10000)

NGNP (4277.0)
GNP (4171.4)

Sarsa (3719.2)
GP (3356.3)

GNP
GP

Sarsa
NGNP

(a) Fitness curves

 0

 1000

 2000

 3000

 4000

500 600 700 800 900 1000A
ve

ra
ge

 N
o.

 d
is

co
ve

re
d

ru
le

s

Generation

XrGNP (3522.2)

GNP-RA1 (2436.0)

GNP-RA2 (2559.3)

GNP-RA1
GNP-RA2

XrGNP

(b) Discovered rules

Figure 1: Results of evolution

Table 1: Generalization ability
Tileworld

Fitness±std.dev. Droped Tiles t-test

GNP 552.0± 860.1 3.8± 5.1 3.3e-06
GP 219.0± 830.0 1.6± 4.6 2.1e-09
Sarsa 324.4± 594.8 2.3± 3.3 5.7e-08

GNP-RA 1291.6± 701.2 7.3± 4.7 2.8e-03
XrGNP 1989.6± 601.2 10.3± 3.9 —

w/o niching 1439.2± 801.1 8.3± 3.9 1.5e-02
w/o credit 1533.2± 641.9 8.6± 3.9 4.3e-02

The final objective is to perform the generalization ability
of XrGNP. The knowledge base evolved from the training en-
vironments is applied to Tileworld with new environments.
The final results are reported in Table 1. From the results it
is found that XrGNP performs the highest generalization a-
bility than the others. The t-test results show the statistical
difference between XrGNP and the others.

4. CONCLUSIONS
A mixture of Pitt- and Mich-style LCSs has been success-

fully proposed in this paper. By formulating its chromo-
some as a directed graph, XrGNP shows the powerful knowl-
edge discovery ability. The proposed system is successfully
applied to solve the multi-step RL problems including the
benchmark one and a real-world case.

5. REFERENCES
[1] John H. Holland and Judith S. Reitman. Cognitive

systems based on adaptive algorithms. SIGART Bull.,
(63):49–49, June 1977.

[2] K. Hirasawa, M. Okubo, H. Katagiri, J. Hu, and
J. Murata. Comparison between genetic network
programming (GNP) and genetic programming (GP).
In Proc. of the IEEE Congress on Evol. Comput., pages
1276–1282, 2001.

[3] X. Li, S. Mabu, and K. Hirasawa. A novel graph-based
estimation of distribution algorithm and its extension
using reinforcement learning. IEEE Trans. Evol.
Comput., 2013. (early access).

[4] X. Li, B. Li, S. Mabu, and K. Hirasawa. A novel
estimation of distribution algorithm using graph-based
chromosome representation and reinforcement learning.
In Proc. of the IEEE Congress on Evol. Comput., CEC
’11, pages 37–44, 2011.

[5] X. Li, S. Mabu, and K. Hirasawa. Use of infeasible
individuals in probabilistic model building genetic
network programming. In Proc. of the Conf. on Genetic
and Evol. Comput., GECCO ’11, pages 601–608, 2011.

[6] R. S. Sutton and A. G. Barto. Reinforcement Learning:
An Introduction. MIT Press, 1998.

156

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20130423172737
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20130423172737
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 2
 1
 2

 1

 HistoryList_V1
 qi2base

