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ABSTRACT
This paper described an automated pattern generator to
generate various synthetic data sets for classification prob-
lems, where the problem’s complexity can be manipulated
autonomously. The Tabu Search technique has been applied
in the pattern generator to discover the best combination of
domain features in order to adjust the complexity levels of
the problem. Experiments confirm that the pattern genera-
tor was able to tune the problem’s complexity so that it can
either increase or decrease the classification performance.
The novel contributions in this work enable the effect of
domain features that alter classification performance, to be-
come human readable. This work provides a new method
for generating artificial datasets at various levels of difficulty
where the difficulty levels can be tuned autonomously.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Genetics-Based Machine
Learning, Learning Classifier Systems

General Terms
Algorithm, Performance

Keywords
Pattern classification, Learning Classifier Systems

1. INTRODUCTION
The main goal of the work is to design a new pattern gen-

eration agent that utilizes Tabu Search technique to gener-
ate various synthetic datasets for classification with differ-
ent levels of complexity based on the classification agent’s
ability to learn. The objectives here is for the pattern gener-
ation agent to autonomously tune and adjust the problem’s
complexity based on the classification agent’s ability. Class
balance, noise, number of instances, and many other pa-
rameters are to be set autonomously either to increase or
decrease the problem’s difficulties required.
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2. METHODS

2.1 Two-Cornered LCSs
In the Two-Cornered LCSs [1], the system consists of

two main agents, the pattern generation agent (i.e. the
Sender(S)) and the pattern classification agent (i.e. the Re-
ceiver (R)). The pattern classification agent is developed
based upon Accuracy-based LCSs with real-value encoding
(XCSR). The algorithmic description for problem generation
and classification is shown in Algorithm 1. S initializes a ran-
dom meta-problem containing a list of parameters (i.e <Fn

Fc Fd Fi Fr Fan Fcn Fcbl Fcbd>) for synthetic dataset gen-
eration. Fn is number of features, Fc is number of conjunc-
tion, Fd is number of disjunction, Fi is number of irrele-
vant features, Fr is number of redundant features, Fan and
Fcn are level of noise that apply to action and condition,
Fcbl percentage of class balance and Fcbd percentage of de-
cision boundary. The dataset consists of a set of n instances,
where each instance is defined by F features. Each instance
n is created on-the-fly based on the specified problem within
the interval of [0, 1] and is labeled accordingly. Using Tabu
Search technique, S searches for the best combination of F

for the set task. Based on R’s classification performance, S
changes the combination of F. If S’s objective is to increase
R’s performance, S attempt to find the best combination of
features that can maximize R’s classification performance
(refer to Table 1).

3. EXPERIMENTS AND RESULTS
In Experiment 1, different combinations of the problem

features (i.e. increasing and decreasing value of Fan, Fcn

and Fcbl) on four problem domains (i.e. Fn=2 to 5) are
enumerated to analyze R’s performance with respect to those
changes (Figure 1 and Figure 2). If there is no gradient in
difficulty than it would be impossible for S either to make
the problem ‘harder’ or ‘easier’ for R to learn.

In Experiment 2, TS was applied in S to search for the best
combination of features in the problem with the objective to
maximize R’s performance (Figure 3). S was started with
a predefined problem (i.e. <Fc=1 Fan=50 Fcn=50 Fcbl=70

Fcbd=25>) that was likely to be a ‘hard’ problem. Figure 4
shows R’s classification performance when TS is applied in
S to minimize R’s performance. S was started with a prede-
fined problem (i.e. <Fc=1 Fan=5 Fcn=5 Fcbl=50 Fcbd=5>)
that was likely to be an ‘easy’ problem.

4. CONCLUSIONS AND FUTURE WORK
Generating datasets through specifying features has led to
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Algorithm 1: Algorithmic description for problem genera-

tion and classification, Subscript R Receiver.

1 begin
2 problem← Sender : generate initial problem to Receiver.

3 for (problem less than maximum problems) do
4 for (instance less than maximum instance in dataset)

do
5 instance← Sender : generate instance based on

problem.
6 Receiver ← pattern : perceive instance from

Sender.
7 GENERATE MATCH SET [M]R out of [P]R using

instance.
8 GENERATE PREDICTION ARRAY PAR out of

[M]R.
9 class← SELECT ACTION according to PAR .

10 GENERATE ACTION SET [A]R out of [M]R
according to class.

11 Receiver : execute action class.
12 reward← Sender : Sender check class and send

reward back to Receiver.

13 if Receiver : end loop then
14 prediction← reward : update prediction with

current reward.
15 UPDATE SET [A]R using prediction possibly

deletion in[P]R.
16 RUN GA in [A]R considering instance

insertion in [P]R.
17 end
18 if instance equal to maximum instance in dataset

then
19 classificationPerformance : calculate

Receiver classification performance.
20 end

21 end
22 if Sender : end loop then
23 problem← APPLY TS on problem based on

classificationPerformance.
24 end

25 end

26 end

Table 1: Changes in features F using Tabu Search.

INITIAL SOLUTION: 2, 1, 0, 0, 0, 50, 50, 70, 25

INITIAL PERFORMANCE: 44.0

BEST PERFORMANCE: 96.0

BEST SOLUTION: 2, 1, 0, 0, 0, 1, 50, 70, 25

Figure 1: Trade-off surface of R’s performance (average

of R’s classification performance from 30 runs, when Fn=2,

while value of Fan and Fcbl is incremented by 5).

a system that can tune datasets to adjust the performance of
the agents in a desired manner. An enumerative analysis of
the potential datasets, identified the performance gradients
but the agent identified useful gradients more efficiently. Im-
portant features, which control the ease of learning within
the problem domain for the classification system, were iden-

Figure 2: Trade-off surface of R’s performance (average

of R’s classification performance from 30 runs, when Fn=2,

while value of Fcn and Fcbl is incremented by 5).

Figure 3: Average of R’s classification performance from

30 runs on 4 problem domains, where TS is used in S for

adjusting the difficulty levels (i.e. from ‘hard’ to ‘easy’).

Figure 4: Average of R’s classification performance from

30 runs on 4 problem domains, where TS is used in S for

adjusting the difficulty levels (i.e. from ‘easy’ to ‘hard’).

tified. In future, the developed system will be used to modify
the process of generating classification problems for Three-
Cornered LCSs Framework, where the problem domain will
tune autonomously depending on the two different agents’
ability to learn (i.e. the Receiver and the Interceptor (I)
which used different techniques of learning) [2].
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