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ABSTRACT
In this paper we present a novel local search for improving
the ability of multiobjective evolutionary algorithms when
finding repeated patterns -motifs- in DNA sequences. In the
metaheuristic design, two competing goals must be taken
into account: exploration and exploitation. Exploration is
needed to cover most of the optimization problem search
space and provide a reliable estimation of the global opti-
mum. In turn, exploitation is also important since normally
the solutions refinement allows the achievement of better re-
sults. In this work we take advantage of both concepts by
combining the exploration capabilities of a population-based
evolutionary algorithm and the power of a local search, es-
pecially designed to optimize the Motif Discovery Problem
(MDP). For doing this, we have implemented a new hybrid
multiobjective metaheuristic based on Artificial Bee Colony
(ABC). After analyzing the results achieved by this algo-
rithm, named Hybrid-MOABC (H-MOABC), and compar-
ing them with those achieved by three multiobjective evolu-
tionary algorithms and thirteen well-known biological tools,
we prove that the hybridization computes accurate biologi-
cal predictions on real genetic instances in an optimum way.
In fact, to the best of our knowledge, the results presented
in this paper improve those presented in the literature.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; G.1.6 [Numerical
Analysis]: Optimization—Global optimization; J.3 [Life
and Medical Science]: Biology and Genetics
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Algorithms
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1. INTRODUCTION
Transcriptional regulation, the primary genetic regula-

tion, is performed by interactions (bindings) of regulatory el-
ements. Although these mechanisms are not yet completely
understood, numerous efforts are being invested in their un-
derstanding. What is known is that certain special pro-
teins called Transcription Factors (TF), or transcriptional
elements, bind to certain small substrings in DNA forming
the Transcription Factor Binding Sites (TFBS) [19]. As a
result of these unions, the gene expression process, which
is the process whereby the genes are transcribed into RNA,
is enabled or disabled. Identifying these TFBSs and other
elements that control gene expression, in addition to the in-
teractions between different TFs, may explain the origin of
living organisms, providing important information about its
complexity and evolution. The optimization problem ad-
dressed in this work, the Motif Discovery Problem (MDP),
aims to discover small DNA patterns -motifs- with some bi-
ological significance as being TFBSs. For doing this, the
MDP is formulated and modeled as a multiobjective opti-
mization problem whose main objective is to find solutions
in the midst of a huge amount of biological information in
DNA sequences. MDP defines three conflicting objective
functions to be maximized: motif length, support, and simi-
larity and, for tackling it, we propose the use of a new hybrid

Hybrid metaheuristics

Low level High level

Relay Teamwork Relay Teamwork

LRH LTH HRH HTH

Figure 1: Classification of hybrid metaheuristics in
terms of design issues.
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multiobjective evolutionary algorithm named Hybrid Mul-
tiobjective Artificial Bee Colony (H-MOABC) based on the
multiobjective metaheuristic presented in [6].

In recent years the interest on hybrid metaheuristics in
the optimization field has increased. In fact, the best re-
sults obtained in many optimization problems are achieved
by hybrid techniques [15]. There are numerous classifica-
tions defined to organize this kind of algorithms, but one of
the best known is presented in [16]. This classification distin-
guishes one first level that includes low-level and high-level
hybridizations. In the low-level hybridization a function of
a given metaheuristic is replaced by another algorithm, an
example might be to insert a local search that optimizes
the solutions obtained in a generation of a population-based
algorithm. In high-level hybrid algorithms there is no rela-
tionship between the internal working of the metaheuristics,
but they collaborate internally maintaining its original op-
eration, an example may be an algorithm that optimizes a
solution generated by another technique. In turn, we can
distinguish two kind of hybridizations: relay or teamwork,
resulting in low-level relay or teamwork hybridizations (LRH
and LTH) and high-level relay or teamwork hybridizations
(HRH and HTH). In relay hybridization, a set of metaheuris-
tics (or functions) are executed one after another by using
the output of the previous technique as input. On the other
hand, we can define a cooperative optimization model that
evolve in a parallel way by considering the teamwork hy-
bridization. In Figure 1 we show a graphical representation
of this classification. In this work we focus on the first kind
of hybridization (LRH), applying a local search at the end of
each evolutionary step of a multiobjective population-based
evolutionary algorithm. As we have already said, this al-
gorithm is based on Artificial Bee Colony (ABC) [7]. To
demonstrate the quality of the proposed method, the re-
sults achieved by the hybrid algorithm are evaluated and
analyzed in broad comparative sections. First, we compare
the results obtained by H-MOABC with those achieved by
the corresponding non-hybridized version, MOABC, demon-
strating the hybridization advantages. Then, we compare H-
MOABC with Non-dominated Sorting Genetic Algorithm II
(NSGA-II, [2]) and Strength Pareto Evolutionary Algorithm
2 (SPEA2, [20]). Finally, we also compare the predictions
made by the hybrid with those predicted by thirteen well-
known biological tools.

The rest of the paper is organized as follows. In the fol-
lowing section we define the MDP, including a brief review
of the problem state-of-the-art. In Section 3 we detail the
proposed function, explaining its operation and the adjust-
ments made in MOABC for its incorporation. The experi-
mental methodology and results are included in Section 4.
Then, in Section 5 we compare the predictions made by H-
MOABC with those predicted by other thirteen biological
tools. Finally, some conclusions and future lines are dis-
cussed in Section 6.

2. MOTIF DISCOVERY PROBLEM
In this section we include a review of the most important

tools and algorithms used for discovering motifs in DNA
sequences, explaining the motivations that have driven us
to use a multiobjective formulation. To do this, we dis-
cuss the advantages and limitations presented by these tech-
niques. Then, we define the MDP multiobjective formula-

tion in mathematical terms, and we solve an artificial MDP
to better understanding the explained concepts.

2.1 Related Work
There are many proposals based on evolutionary tech-

niques for discovering motifs in DNA sequences. Some ex-
amples are FMGA (Finding Motifs by Genetic Algorithm)
[9], a Genetic Algorithm (GA) based on the SAGA oper-
ators; St-GA (Structured Genetic Algorithm) [14]; MDGA
(Motif Discovery using a Genetic Algorithm) [1]; or GAME
[18], a GA used for detecting cis-regulatory elements. Al-
though there are other proposals such as TS-BFO [11], EDA/DE
proposed by the same authors in [12], or PCEA [10]; if we
focus on the proposals presented for discovering motifs, we
can note how many of them are based on GAs. Further-
more, almost all listed proposals employ a single objective
to discover motifs, the motif length is given beforehand, and
try to find motifs in all sequences. Furthermore, [5] and [4]
propose a new multi-term fitness function, remedying some
of the previously mentioned limitations. However, from our
point of view, the best way to address the MDP is using a
multiobjective approach. In [8], the author propose a mul-
tiobjective GA based method named MOGAMOD for dis-
covering motifs, demonstrating the advantages of using this
multiobjective methodology. Due to the advantages of this
kind of optimization, we have also adopted it in our problem
definition. Unfortunately, we have not been able to compare
the results obtained by our algorithms with those obtained
by MOGAMOD, due to changes that we have made in our
problem definition.

With respect to non-evolutionary techniques, we can find
a lot of biological tools in the literature. There are different
types of tools, one of the best known classifications distin-
guish two kind of tools: string-based and probabilistic bio-
logical tools. String-based biological tools guarantee global
optimality and they are appropriate for finding totally con-
strained motifs, some examples are Oligo/Dyad-Analysis,
MITRA (Mismatch Tree Algorithm), YMF, QuickScore, and
Weeder. Among the probabilistic tools, which usually im-
ply representation of the motifs by a position weight ma-
trix, we highlight Consensus, MEME (Multiple EM for Mo-
tif Elicitation), Improbizer, AlignACE (Aligns Nucleic Acid
Conserved Elements), ANN Spec (Artificial Neural Network
with a GS method to define the Specificity), MotifSampler,
GLAM (Gapless Local Alignment of Multiple sequences),
and SeSiMCMC (Sequence Similarities by Markov Chain
Monte-Carlo). Thanks to the work [17], we can compare
the results obtained by our algorithms with those obtained
by these thirteen listed biological tools.

2.2 Mathematical Formulation
To solve the MDP we have to optimize three conflicting

objective functions: motif length, support, and similarity;
as well as satisfy a set of constraints. Given a set of se-
quences S = {Si|i = 1, 2, ..., D} of nucleotides defined on
the alphabet B = {A,C,G, T}. Si = {Sj

i |j = 1, 2, ..., wi} is
a sequence of nucleotides, where wi is the sequence width.
The set of all the subsequences contained in S is {sjii |i =
1, 2, ..., D, ji = 1, 2, ..., wi − l + 1}, where ji is the binding
site of a possible motif instance sji on sequence Si, and l is
the motif length, the first objective to be maximized. To ob-
tain the values of the other two objectives we have to build
the Position Indicator Matrix (PIM) A = {Ai|i = 1, 2, ..., D}
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of the motif, where Ai = {Aj
i |j = 1, 2, ..., wi} is the indica-

tor row vector with respect to a sequence Si. Aj
i is 1 if the

position j in Si is a starting position of a binding site, and
0 otherwise. We refer to the number of motif instances as
|A| = ∑D

i=1

∑wi
j=1 A

j
i . We also require to find the consensus

motif, which is a string abstraction of the motif instances.
Only those sequences that achieve a motif instance of cer-
tain quality with respect to the consensus motif are taken
into account when we build the final motif. This is indi-
cated by the second objective to be maximized, the support.
Furthermore, S(A) = {S(A)1, S(A)2, ..., S(A)|A|} is a set of

|A| motif instances, where S(A)i = S(A)1iS(A)2i ...S(A)li is
the ith motif instance in |A|. S(A) can also be expanded as
(S(A)1, S(A)2, ..., S(A)l), where S(A)j = S(A)j1S(A)j2...S(A)j|A|
is the list of nucleotides on the jth position in the motif in-
stances. Then, we build the Position Count Matrix (PCM)
N(A) with the different nucleotide bases on each position
of the candidate motifs (A) which have passed the threshold
marked by the support. N(A) = {N(A)1, N(A)2, ..., N(A)l},
andN(A)j = {N(A)jb|b ∈ B}, whereN(A)jb = |{S(A)ji |S(A)ji =
b}|. The dominant nucleotides of each position are normal-

ized in the Position Frequency Matrix (PFM) N̂ = N(A)
|A| .

Finally, we calculate the third objective value, the similarity,
by averaging all the dominance values of each PFM column,
as is indicated in the following expression:

Similarity(Motif) =

∑l
i=1 maxb{f(b, i)}

l
(1)

where f(b, i) is the score of nucleotide b in column i in the
PFM and maxb{f(b, i)} is the value of the dominant nu-
cleotide in column i.

To summarize, motif length objective function indicates
the number of nucleotides that compose the solution, sup-
port represents the number of sequences used to build the
final solution (those that share at least a 50% of nucleotides
with the consensus motif), and similarity measures the sim-
ilarity among the substrings that have exceeded the previ-
ously mentioned threshold value of support.

As far as constraints is concerned, considering that mo-
tifs are usually formed by a few nucleotides [3], we have
restricted the motif length to the range [7,64]. We have also
restricted the minimum support value to 2 in the data sets
composed by 4 or less sequences, and to 3 for the other ones
(more than 4 sequences). In this way, we ensure that at
least a 20% of the instance sequences support the quality
of the final solution. Finally, we have applied the complex-
ity concept detailed in [5] and extended in [4] by using the
following expression:

Table 1: An artificial motif discovery problem.

Organism Seq. Start Sites Concordance

Human 0 -365 GTGATATTCC 6/10
√

Human 1 -87 GGAAACTCCG 8/10
√

Human 2 -403 TGAGACTGCC 6/10
√

Human 3 -199 GTTGAATAAG 4/10 X

Human 4 -214 GGGAAATCCC 9/10
√

Human 5 -257 GGAATTTCCC 8/10
√

(a) Consensus motif.

1 2 3 4 5 6 7 8 9 10

A: 0 0 3 4 3 2 0 0 0 0

C: 0 0 0 0 0 2 0 3 5 4

G: 4 4 2 1 0 0 0 1 0 1

T: 1 1 0 0 2 1 5 1 0 0

(b) Position count matrix.

1 2 3 4 5 6 7 8 9 10

A: 0.0 0.0 0.6 0.8 0.6 0.4 0.0 0.0 0.0 0.0

C: 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.6 1.0 0.8

G: 0.8 0.8 0.4 0.2 0.0 0.0 0.0 0.2 0.0 0.2

T: 0.2 0.2 0.0 0.0 0.4 0.2 1.0 0.2 0.0 0.0

(c) Position frequency matrix.

(d) Resulting motif.

Figure 2: Consensus motif, position count matrix,
position frequency matrix, and resulting motif of the
MDP example included in Table 1.

Complexity = logN
l!∏
(ni!)

(2)

where N = 4 for DNA sequences, l is the motif length, and
ni is the number of nucleotides of type i ∈ {A,C,G, T}. This
constraint ensures a minimum number of base changes (A,
C, G, and T) in the discovered DNA strings. For instance,
if we consider the motif ‘AAAA’ (nA = 4, nT = 0, nG = 0,
and nC = 0) we will obtain a minimum complexity since
we get the highest value in

∏
(ni!). Otherwise, if we have,

for example, the ‘ACGT’ motif (nA = 1, nT = 1, nG = 1,
and nC = 1) we will obtain the highest complexity for motif
length equal to 4. In our algorithms we have established
a minimum complexity of 50%. These constraints must be
met by all the generated solutions, i.e., if a solution does not
meet all the defined constraints, it will be discarded and will
not be part of the population.

2.3 MDP Example
In Table 1 and Figure 2 we represent the resolution of an

artificial MDP of length 10 (motif length = 10) to facilitate
the understanding of the mathematical concepts described in
the previous subsection. In Table 1 we indicate the organism
to which each sequence belongs, the sequence identifier, the
starting location of each candidate motif, the corresponding
sites, and the achieved concordance rate. This latter value is
obtained by comparing each candidate motif with the con-
sensus motif (Figure 2(a)) at a nucleotide level. As we have
already explained, those candidates that reach a minimum
concordance rate of 50% will be taken into account in the
second objective function (support) and, consequently, will
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be used to compose the final solution (Figure 2(d)). In this
example we have support = 5. To calculate the similarity
value we have to build the PCM and PFM (Figures 2(b)
and 2(c)) and apply the equation 1 by using the dominant
values of each position. In this case we obtain a similarity
of a 74%.

3. LOCAL SEARCH OPERATION
The local search presented in this paper aims to improve

the process of discovering motifs in DNA sequences. As we
will see in the following sections, its operation is simple as
well as effective for improving the quality of the solutions
discovered by a given metaheuristic. The implemented local
search defines three important parameters: the window size
(WS), the search direction (DIR), and the reference string
(REF ). The window size defines the substring length that
we will attempt to find in the corresponding DNA sequences.
We have conducted experiments with window sizes ranging
from WS = 1 to WS = 7 since, according to the defined
problem constraints, the minimum motif length is 7. The
search direction is the direction that we must take to find
the selected substring. DIR = 0 indicates that we begin
the search from the beginning of the sequence, i.e., from the
nucleotide 0; DIR = 1 that we have to choose a random
direction (right or left) from the starting positions of the
corresponding candidate motif; and DIR = 2 that we have
to check the quality of the solutions resulting from searching
in both directions (right and left from the starting position)
and select the one which produces the best solution. Finally,
the REF parameter indicates which motif (among all can-
didates and the consensus motif) is used as reference. With
REF = 0 we select the candidate motif of the first sequence,
with REF = 1 we choose the candidate of a randomly se-
lected sequence, with REF = 2 we use the consensus motif,
and with REF = 3 we consider the candidate closer to the
consensus motif at a nucleotide level. By using the example

(a) Considering WS = 5, possible strings to be
searched (arrow indicates the selected substring).

(b) Considering DIR = 1, changes made in the starting can-
didate motif positions (in gray the old locations and in green
the new ones).

Figure 3: Graphical representation of the local
search operation.

included in Figure 3, the following steps explain the opera-
tion of the defined local search:

Step 1: We set the value of the WS, DIR, and REF
parameters. - Example: We use WS = 5, DIR = 1, and
REF = 2.

Step 2: We load the reference string considering theREF
parameter. - Example: As REF = 2, we use the consensus
motif as reference string, in this case: ACGTAACG.

Step 3: We repeat the following steps on all sequences
where we have found any candidate motif. - Example: We
repeat the following steps on the 5 sequences that compose
the solution.

Step 3.1: We select a random substring among the pos-
sible windows. - Example: As WS = 5 and the consen-
sus motif is ACGTAACG, we randomly choose one among
the four possible substrings: ACGTA, CGTAA, GTAAC, or
TAACG (see Figure 3(a)). In this case we select the first
substring: ACGTA.

Step 3.2: We search the substring of size WS in the
corresponding sequence following the indications of DIR.
- Example: With DIR = 1 we search the substring in the
corresponding sequence following a random direction, right
or left of the candidate motif starting position.

Step 3.3: If we find the substring we update the starting
location of the processed candidate motif.

Step 3.4: If WS > 1 and we do not find the substring,
we return to the step 3.2, reducing the value of WS by one.
- Example: If we do not find the ACGTA substring in the
sequence and WS > 1, we reduce the WS value in one unit
(WS = WS−1) and we will search, in this case, the ACGT
substring.

Step 4: We evaluate the resulting solution and if it is
able to dominate the previous one, we exchange them.

4. EXPERIMENTAL RESULTS
To analyze the performance of the proposed local search,

we have embedded it in a multiobjective evolutionary al-
gorithm specially dedicated to discovering motifs in DNA

Table 2: Individual representation.
Seq. 0 Seq. 1 Seq. 2 Seq. n-1

Motif Length S0 S1 S2 ... Sn−1

Table 3: Instance properties.
Number of Sequence Number of Established

Sequences Size Nucleotides Runtimes (s)

dm01g 4 1500 6000 20

dm04g 4 2000 8000 20

dm05g 5 2500 12500 20

hm03r 10 1500 15000 30

hm04m 13 2000 26000 30

hm16g 7 3000 21000 20

mus02r 9 1000 9000 20

mus03g 4 1500 6000 20

mus07g 12 500 6000 30

yst03m 8 500 4000 20

yst04r 7 1000 7000 20

yst08r 11 1000 11000 30
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Table 4: Best results (median hypervolumes and interquartile ranges) achieved by MOABC, H-MOABC
(after configuring each parameter), NSGA-II, and SPEA2.

Instance MOABC H-MOABC NSGA-II SPEA2

dm01g 83.24% 0.84% 86.29% 2.04% 82.69% 0.74% 82.87% 0.70% +

dm04g 83.77% 1.37% 87.22% 2.00% 82.24% 1.16% 82.44% 1.06% -

dm05g 86.39% 1.01% 90.84% 0.85% 85.44% 0.86% 86.27% 1.14% -

hm03r 60.18% 2.63% 69.10% 3.45% 47.83% 4.02% 53.06% 1.56% +

hm04m 53.20% 2.35% 62.49% 2.45% 43.32% 3.40% 46.39% 0.94% +

hm16g 81.55% 5.52% 91.53% 2.00% 70.14% 1.02% 71.66% 1.70% +

mus02r 63.58% 2.42% 72.50% 2.84% 60.63% 1.20% 59.60% 1.48% +

mus03g 79.84% 0.79% 82.77% 1.23% 77.48% 0.47% 77.48% 0.53% -

mus07g 89.21% 2.93% 88.34% 3.63% 87.97% 1.95% 89.35% 0.52% -

yst03m 69.68% 2.45% 76.86% 1.35% 65.16% 2.08% 66.24% 1.13% +

yst04r 75.54% 1.16% 79.93% 0.98% 75.18% 0.50% 71.64% 0.56% +

yst08r 62.91% 2.30% 74.81% 2.96% 66.25% 1.74% 56.88% 1.12% +

Mean 74.09% 80.22% 70.36% 70.32%

vs H-MOABC 11 1 12 11

dm04g: SPEA2 versus NSGA-II

dm05g: MOABC versus SPEA2

mus03g: SPEA2 versus NSGA-II

mus07g: MOABC versus SPEA2, H-MOABC versus NSGA-II

sequences. This algorithm is known as Multiobjective Ar-
tificial Bee Colony (MOABC) and it is properly configured
(see [6] for further information). Its hybridization have been
named Hybrid MOABC (H-MOABC) and it applies the im-
plemented local search instead of exploring the neighbor-
hoods of the employed bee food sources. Thus, the local
search is applied to all individuals of the population once
for generation. The basic idea behind this hybridization is
to maintain its evolutionary scheme and only improve the
quality of the discovered solutions. With regard to the ex-
periments, we have carried out 31 independent runs using
g++ (GCC) 4.4.5 on a 2.3GHz Intel PC with 1GB RAM.
To assess the quality of the obtained results we use the hy-
pervolume indicator [21], establishing the reference point in
the theoretical optimum point of each instance; and the
set coverage [20]. The representation of the individuals is
the same in all algorithms and it includes the motif length
and the starting position of each candidate in each sequence
(see Table 2). Finally, as benchmark we have used a set of
twelve biological instances with genetic information belong-
ing to four organisms: drosophila melanogaster (dm), homo
sapiens (hm), mus musculus (mus), and saccharomyces cere-
visiae (yst) obtained from [17]. Their properties are de-
scribed in Table 3.

The first results are included in Table 4. In this ta-
ble we show the hypervolumes achieved by the MOABC,

Table 5: Direct comparison of the outcomes
achieved by the algorithms. Each cell gives the frac-
tion of non-dominated solutions obtained by A cov-
ered by the non-dominated points from B.

A / B MOABC H-MOABC NSGA-II SPEA2 Mean

MOABC X 26.14% 93.87% 93.33% 71.11%

H-MOABC 79.42% X 91.99% 90.23% 87.21%

NSGA-II 13.52% 13.41% X 64.24% 30.39%

SPEA2 16.38% 14.59% 43.44% X 24.80%

Mean 36.44% 18.05% 76.43% 82.60%

NSGA-II, and SPEA2 algorithms. In addition, in the last
column of the table we show the ‘+’ symbol if the differ-
ences among the results of all algorithms are statistically
significant, and ‘-’ otherwise. Finally, at the bottom of the
table, we indicate in which cases there are no statistically
significant differences. We now will discuss these results by
parts. First, we can observe how the non-hybridized mul-
tiobjective evolutionary algorithm (MOABC) is able to ob-
tain quality results, surpassing those achieved by two stan-
dard multiobjective evolutionary algorithms such as NSGA-
II and SPEA2. MOABC achieves a percentages equal to
74.09% versus the 70.36% and 70.32% presented by NSGA-
II and SPEA2. Concerning hybrid algorithm, we include
the partial results obtained after tuning each parameter.
We have conducted experiments with WS = {1, 2, ..., 7},
REF = {0, 1, 2, 3}, and DIR = {0, 1, 2}, as it is explained
in Section 3. The H-MOABC local search gets the best re-
sults with WS = 6, REF = 1, and DIR = 2. If we compare
the results achieved by this new hybrid algorithm with those
obtained by its non-hybridized version, we can note how the
results have been considerably improved, increasing from
74.09% to 80.22% (MOABC versus H-MOABC). To better
appreciate this improvement we have included additional in-
formation in the last rows of Table 4. We include the mean
hypervolume achieved by each technique when they solve
the twelve instances and, on the other hand, we also indi-
cate, in the case of the H-MOABC algorithm, the number of
instances where it obtains the higher hypervolume; and for
the rest (MOABC, NSGA-II, and SPEA2), the number of
instances where they get a better result than the H-MOABC
algorithm. This information allows us to compare the hy-
brid algorithm with its non-hybridized version, and with the
NSGA-II and SPEA2 algorithms. As we can see, the supe-
riority of the hybrid is clear because H-MOABC achieves
the best result in 11 of the 12 solved instances. Finally,
we have followed the statistical methodology described in
[13] for studying the differences among the results. For do-
ing this, we first apply the Kolmogorov-Smirnov test for
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Figure 4: Comparison among the non-dominated solutions with maximum support discovered by the algo-
rithms.

analyzing the sample distributions and the Levene test for
examining the variance homogeneities. If both tests are pos-
itives, we conduct a parametric ANOVA test and, otherwise,
we conduct a non-parametric Kruskal-Wallis test, for study-
ing the result differences, always considering a confidence
level of 95%. At the foot of the table we indicate in which
cases the differences among algorithms are not statistically
significant.

In Table 5 we include the results obtained by using the set
coverage metric. As we can see, the drawn conclusions reaf-
firm those achieved in the first comparison. The hybrid al-

gorithm (H-MOABC) is the technique that covers a greater
percentage of solutions: 87.21%. In addition, it is also the
less covered algorithm: 18.05%. This means that not only
the overall quality of the Pareto front is good (demonstrated
by the hypervolume metric), but also the solutions that com-
pose them.

Finally, in Figure 4 we show some of the solutions dis-
covered by the compared algorithms (MOABC, H-MOABC,
NSGA-II, and SPEA2). Thus, we provide a graphical rep-
resentation of the quality improvement. More specifically,
we have represented the non-dominated solutions with max-
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imum support discovered by the algorithms in the solved
instances: dm01g, dm04g, dm05g, hm03r, hm04m, hm16g,
mus02r, mus03g, mus07g, yst03m, yst04r, and yst08r. Ob-
serving these graphs, we can see how the hybrid algorithm
fronts achieve greater height (remember that the objective
functions have to be maximized), width, and spread. Al-
though this information is limited to the maximum support
Pareto fronts, it allows us to give an idea of the improvement
achieved by using the presented local search.

5. COMPARISON WITH OTHER AUTHORS
To demonstrate the quality of the solutions discovered by

the designed hybrid algorithm, we have compared the dis-
overed predictions with those made by thirteen well-known
biological tools such as Consensus, MEME, AlignACE, ANN Spec,
Improbizer, MotifSampler, GLAM, SeSiMCMC, Oligo/Dyad-
Analysis, MITRA, YMF, QuickScore, and Weeder. To per-
form this comparison we define a set of four biological in-
dicators named Sensitivity (nSn), Positive Predictive Value
(nPPV ), Performance Coefficient (nPC), and Correlation
Coefficient (nCC). These biological indicators measure the
correction of the motifs discovered by our algorithm by com-
paring their positions with the real binding site locations.
This comparison is conducted at a nucleotide level by using
the following statistical parameters: TP (True-Positives),
TN (True-Negatives), FP (False-Positives), and FN (False-
Negatives). The methodology followed to perform this com-
parison, all results presented by the thirteen compared bi-
ological tools, and the biological indicator expressions are
broadly described in [17].

In Table 6 we include the results of this comparison. Since
we are comparing the results obtained by fourteen tech-
niques (thirteen biological tools and our hybrid algorithm)
by using four biological indicators in a total of twelve in-
stances, we can imagine the volume of biological data that
we have to manage. To organize all this information and
make this comparison more understandable, we have fol-
lowed the described methodology. First, we look for the tool
that gets the best result for each instance and each biolog-
ical indicator (information included in the first and second
column of the tables). It is important to note that the bio-
logical indicators are in the range [-1,1], where -1 indicates
perfect anti-correlation and 1 indicates perfect correlation.
After this, we have to select the best multiobjective solu-
tion discovered by our algorithm. For doing this, we select,
among all non-dominated solutions predicted by our hybrid
algorithm, the one with the best combined score (result from
adding the four biological indicator values). Thus, the in-
formation included in the tables are obtained by a single
motif. Once described the information of Table 6, we can
analyze its contents. Observing the results, we can see how
the predictions made by H-MOABC achieve better results
than those predicted by the best biological tools in most
cases. Being also important to note that, while many tools
are specialized in solving instances of a given organism, our
hybrid algorithm is able to obtain good results in all in-
stances, regardless of the organism to which it belongs.

6. CONCLUSIONS AND FUTURE WORK
In this paper we propose a new local search to improve

the ability of multiobjective metaheuristics when discover-
ing motifs in DNA sequences. The proposed local search

Table 6: Comparison between the solutions of H-
MOABC and the results predicted by thirteen well-
known biological tools (”-” when no tool is able to
find solutions).

(a) Sensitivity (nSn).

Instance Best tool Result H-MOABC
dm01g SeSiMCMC 0.344000 0.472000
dm04g MotifSampler 0.022222 0.355556
dm05g MEME 0.037500 0.181250
hm03r MEME 0.063726 0.161765
hm04m AlignACE 0.005952 0.160714
hm16g - 0.000000 0.341463
mus02r MEME 0.094828 0.172414
mus03g AlignACE 0.281690 0.669014
mus07g ANN Spec 0.040000 0.520000
yst03m Improbizer 0.340136 0.176871
yst04r Consensus 0.335878 0.343511
yst08r AlignACE 0.387097 0.555556

(b) Positive Predictive Value (nPPV).

Instance Best tool Result H-MOABC
dm01g SeSiMCMC 0.344000 0.737500
dm04g MotifSampler 0.032967 0.761905
dm05g MEME 0.026667 0.966667
hm03r MEME 0.108333 1.000000
hm04m AlignACE 0.006061 0.450000
hm16g - 0.000000 0.565657
mus02r MEME 0.142857 1.000000
mus03g AlignACE 0.256410 0.678571
mus07g ANN Spec 0.020942 0.722222
yst03m YMF 0.700000 0.928571
yst04r MITRA 0.357143 0.865385
yst08r MotifSampler 0.786408 0.782828

(c) Performance Coefficient (nPC).

Instance Best tool Result H-MOABC
dm01g SeSiMCMC 0.207730 0.404110
dm04g MotifSampler 0.013453 0.320000
dm05g MEME 0.015831 0.180124
hm03r MEME 0.041801 0.161765
hm04m AlignACE 0.003012 0.134328
hm16g - 0.000000 0.270531
mus02r MEME 0.060440 0.172414
mus03g AlignACE 0.155039 0.508021
mus07g ANN Spec 0.013937 0.433333
yst03m oligodyad 0.261905 0.174497
yst04r Consensus 0.202765 0.326087
yst08r MotifSampler 0.269103 0.481366

(d) Correlation Coefficient (nCC).

Instance Best tool Result H-MOABC
dm01g SeSiMCMC 0.330043 0.583302
dm04g MotifSampler 0.013401 0.515335
dm05g MEME 0.006491 0.414609
hm03r MEME 0.063601 0.397568
hm04m AlignACE -0.000400 0.266233
hm16g MEME -0.005204 0.436154
mus02r MEME 0.097480 0.410754
mus03g AlignACE 0.222480 0.654279
mus07g ANN Spec 0.006056 0.607391
yst03m oligodyad 0.437304 0.397973
yst04r Consensus 0.322430 0.540508
yst08r MotifSampler 0.470596 0.652253
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is specially designed to optimize the resolution of this bio-
logical optimization problem, the Motif Discovery Problem
(MDP). It is simple and easy to be understood and con-
figured (it only defines three parameters: WS, REF , and
DIR). Moreover, it has also demonstrated a high effective-
ness in improving the quality of the solutions found by other
techniques. To analyze its performance we have embedded
it in a multiobjective evolutionary algorithm resulting in a
novel technique named Hybrid Multiobjective Artificial Bee
Colony (H-MOABC). In different sections we have compared
the achieved results, demonstrating that the hybrid algo-
rithm, which incorporates the defined local search, is able
to discover better solutions. Finally, we have also compared
the predictions made by H-MOABC with those predicted by
thirteen well-known biological tools among which we high-
light AlignACE, MEME, and Weeder. The obtained results
demonstrate the good biological quality of the solutions pre-
dicted by our hybrid algorithm.

As future work we will intend to apply our algorithm to
solve more complex instances by using, if necessary, paral-
lelism techniques.
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[6] González-Álvarez, D. L., Vega-Rodŕıguez,
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