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ABSTRACT 
In this paper, we present an algorithm based on genetic 
programming for single (one) class classification that uses one set 
containing similar patterns in training process. This type of 
problem is called single (one) class classification, a novel 
detection. The proposed algorithm was tested and compared to 
seven other traditional methods based on two publicly available 
transcriptomic and proteomic time series datasets and two public 
breast cancer datasets. The results show that the algorithm could 
find most similar patterns in the databases with rather low 
misclassification rates. We also applied parallel genetic 
programming for this algorithm and it proves that the island 
model can give better solutions than sequential genetic 
programming. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving – Heuristic 
methods. 

General Terms 
Algorithms. 
Keywords 
Single class classification, one class classification, genetic 
programming, island model. 

1. INTRODUCTION 
In the field of pattern classification, this problem is normally 
divided into unsupervised learning (cluster methods) and 
supervised methods. The supervised methods are based on expert 
knowledge that are represented as training sets. Supervised 
methods can be classified into binary classification, multi-class 
classification (multi-class classification is usually converted into 
multi binary classifications), and single class classification. The 
training set of binary classification consists of two sub sets, 
namely positive set and negative set. The positive set contains 
similar (target) patterns which we would like to search; and the 
negative set is opposite of the positive set. The negative set is 
very important because it helps classifiers to recognize patterns 
which differ from the positive set. However there are some 

features of the negative set that can affect searching results such 
as type of patterns and number of patterns. 

Moreover, a fundamental assumption of binary classification is 
that the training and test set have identical distribution [23] but 
this assumption may not hold in practice. Li et al. [23] studied a 
particular problem where the positive set is identically distributed 
but the negative set may or may not be so and he gave a 
significant conclusion that the negative set should not be used in 
this setting and learning from positive and unlabeled sets fits this 
special case quite well. 
In recent years, the single (one) class classification has rapidly 
emerged in pattern recognition field; the motivation is that the 
negative set is either not present or not properly sampled. 
According to Khan and Madden [1], single class classification can 
be classified under three types 1) learning with positive examples 
only; 2) learning with positive examples and some amount of 
poorly distributed negative examples; 3) learning with positive 
and unlabeled data. 
Curry and Heywood [26, 27] proposed multiobjective one class 
genetic programming, dynamic page-based linear genetic 
programming was fulfilled as underlying learner.  

Tax and Duin [3], [4] introduced a method called support vector 
data description (SVDD), inspired by support vector machine. 
This method computes a sphere with minimal volume covering a 
set of patterns. The sphere boundary is described by support 
vectors. Furthermore, the hyper-sphere model of SVDD can be 
made more flexible by introducing kernel functions. Tax [2] 
exerted a polynomial and a Gaussian kernel and found that the 
Gaussian kernel gives better results for most data sets. 

Scholkopf and Smola [5] constructed a hyper-plane which is 
maximally distant from origin, with all data points lying on the 
opposite side from the origin and such that the margin is positive. 

Yu [7] proposed a single class classification algorithm called 
mapping convergence that computes an accurate boundary of the 
target class from positive and unlabeled data, and without labeled 
negative data. The author concluded that without the negative set, 
single class support vector machines requires a much larger 
amount of positive training data to induce an accurate class 
boundary. 

To and Vohradsky [6] considered the single class classification as 
the nonlinear programming. This algorithm finds the hyper-plane 
that minimizes the distances from the hyper-plane and all points 
of the positive set. The authors suggested using genetic algorithm 
to solve the nonlinear programming and the parallel model of 
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genetic algorithm called island model was also used to improve 
the results. The algorithm was applied to microarray data. 

Gaussian process methods are widely applied for regression and 
classification problems. Gaussian process defines a distribution 
over functions based on the central assumption that all function 
values are jointly normal distributed. Kemmler et al. [24] 
analyzed different measures derived from Gaussian process in 
single class classification for visual object recognition. 

Peng et al. [20] presented a threefold classifier from positive and 
unlabeled documents. First, reliable negative documents are 
identified by improved 1-DNF algorithm. Second, a set of 
classifiers are built using support vector machine. Finally, genetic 
algorithm search weights of classifiers to build the final classifier. 

A naïve Bayes algorithm [21] learns from positive and unlabeled 
documents. The results show that performance of this algorithm 
can be comparable with naïve Bayes which learns from labeled 
data. 

De Comite et al. [8] proposed an algorithm based decision tree 
which can take three sets, namely labeled examples, positive 
examples, and unlabeled data as input. The decision tree is 
generated by a modified version of C4.5. The proposed algorithm 
was tested based on two public data sets called kr-vs-kp and adult. 

Learning with positive and unlabeled examples [22] was 
converted into learning with noise by labeling all unlabeled 
examples as negative and use a linear function to learn. In order to 
minimize the expected sum of false positive and false negative 
error frequencies, the real-value conditional probability of 
observing a positive label by performing logistic regression was 
learnt. 

Many various single class classification algorithms using global 
Gaussian approximation, 1-nearest neighbor, neural network, 
statistic methods were mentioned in [9]-[11]. 

In recent years, parallel models have been applied in evolutionary 
computation and they show not only increase speed, but also give 
high quality solutions [6]. In this paper, the island model was 
applied and the results testify that the island model outperforms 
sequential genetic programming. 

In this work, we would like to introduce an algorithm using a set 
of similar patterns for the training process. This kind of methods 
is called single (one) class classification [1], [5]. The proposed 
algorithm that is based on genetic programming is to search a 
polynomial function describing the similarity among patterns of 
the training set. 

The outline of the paper is as follows. The section 2 introduces 
some basic definitions, the problem statement, and the algorithm. 
In section 3, we describe how our approach is evaluated and 
compared to state of the art classification algorithms on a number 
of real datasets, obtaining very good performance. Finally, we 
conclude with a brief discussion. 

2. METHOD 
Let TS = {p1, …, pm} be the training set, where pi ∈ ℜn is a 
pattern (point) and m is number of pattern in the training set. In 
this paper, the term ‘pattern’ or ‘point’ is a time series vector 

( )T21  ..., , , iniii ppp=p , where n is number of time points 
(measurements). At the beginning, the training set, TS, consists of 

a small number of similar patterns. During the training process, 
the genetic programming searches a curve which can fit all 
patterns of the training set. Then patterns of database, which are 
close to the curve, are selected. The selected patterns are desired 
to have similarity to the template pattern. 

Average Euclidean distance between two patterns 

( )T21  ..., , , rnrrr ppp=p  and ( )T21  ..., , , snsss ppp=p  is 
given by: 
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Because each element of pattern is within the range [0, 1], so 
Dis(pr, ps) is within [0, 1]. The value of zero means that ps and pr 
are identical. The arithmetic mean of the distances between the 
pattern, pr, and other patterns of the training set is given by 
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The pairs of values [pi, M(pi)] (i = 1..m) constitute the regression 
problem. There are many methods to solve the regression 
problem. According to Koza [12], genetic programming (GP) is 
rather powerful method. Therefore, we decided to use GP to 
search for a function that satisfies the following criterion. 

 )(    )( rr Mf pp ≈  (3) 

In fact, if there exists the function describing (3), the type of that 
function will not be known in advance. Of course, we can use 
different mathematical methods to approximate functional 
relationship; in this algorithm we use the polynomial function 
because the polynomial function can be used to approximate to 
any kinds of function, in principle. Therefore the fitness function 
is given by 

 ∑
=

=
m

i
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where 
• m: number of patterns of the training set. 
• f(pr): polynomial function. 
• M(pi): mean of the distances between pattern, pi, and other 

patterns of the training set computed by (2). 

2.1 Classification 
After the function is determined by genetic programming, the 
function values of all patterns of the training set are calculated. 
Based on these values, the mean, μ and standard deviation, σ can 
be extracted. If the function value, f(a) of the tested pattern, a is 
within the range [μ – 2σ, μ + 2σ], then the tested pattern, a is 
defined as similar to the training set. 

We selected the above criterion because most of natural 
phenomenon comply the normal distribution and 95% of cases 
fall into the range [μ – 2σ, μ + 2σ]. Although any criterion which 
analyzes distribution of function values of all patterns of the 
training set can be fulfilled, we selected the above criterion 
because it is quite simple and results are satisfied. 
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2.2 Performance Measurements 
Performance of the algorithm was evaluated by using two popular 
indicators [6], namely sensitivity (Se) and specificity (Sp), defined 
as follows 

 
C

TPSe =  (5) 

 
R

R FP
Sp

−
=  (6) 

with 
• TP (true positive): the classifier predicts that the pattern is in 

the training set and the pattern belongs to the training set. 
• FP (false positive): the classifier predicts that the pattern is in 

the training set but the pattern does not belong to the training 
set. 

• |C|: total number of patterns which are similar to the patterns 
of the initial training set. 

• |R|: total number of patterns which are different from the 
patterns of the training set. 

The sensitivity means that the rate of patterns is correctly 
classified. The value one means all similar patterns are found. The 
specificity is the rate of misclassified patterns. The value one 
means no misclassified patterns found. The values of both Se and 
Sp should approach one for good performance. 

2.3 Genetic Programming Parameters 
The influence of the genetic programming parameters, i.e. 
population size, probability of crossover, and number of 
generations, on the performance of the algorithm was tested with 
a pattern of an arbitrarily chosen size n = 21 (the size is typical 
for the temporal proteomic or transcriptomic experiments). As the 
effect of the parameters was seen only for the level of added noise 
greater than or equal 30%, we have created a test set by adding 
30% noise to the patterns. The influence of the parameters was 
evaluated using standard ROC curves. 

Population size (number of trees in the population) is one of the 
most important parameters of the GP. If the population size is too 
small, it is difficult to find good solution; and if it is too large, the 
computing time is long and the algorithm tends to overfit. Results 
of Se and Sp for different values of GP parameters are 
summarized in Figures 1–3. 

Figures 1–3 show a very good overall performance of the algorithm 
when both Sp and Se are close to 1 for most of the parameter 
combinations. The algorithm achieves the best performance for a 
population size equal to 1000 (Se = 1, Sp = 0.89) where the 
maximum number of generations does not influence Se until the 
value of 700 when the selectivity decreases, and when Sp 
monotonously increases with the number of generations used. The 
best combination of Sp and Se is reached for 500 and/or 700 
generations.  The sensitivity Se increases with the probability of 
crossover, when for the value of 0.8 the Se = 1, Sp fluctuates around 
0.9. The best combination of Se and Sp is reached when the 
probability of crossover is equal to 0.9. The maximum depth of the 
initial random tree was arbitrarily chosen as 7. 

The selected control parameters of genetic programming are listed 
in Table 1. 

2.4 Parallel Genetic Programming 
Among four major types of parallel genetic programming [12], 
the island model is rather complicated and is the most popular 
type [14]. In this section, the island model is generally introduced. 
In the island model, the population is partitioned into sub 
populations. Each sub population which is assigned to one 
processor and runs independently is called island. After a 
predefined number of generations, islands exchange trees with 
each other called migration. This model has been being applied 
for many problems [15–17] and shows that it not only increases 
performance of algorithms but also gives results better than 
sequential genetic programming. 

In order to use the island model, we have to determine some 
parameters as: topology, migration rate, migration frequency, and 
sub population size. 

There are some topologies as grid, ring, and random one. 
Fernandez de Vega [17] introduced a random topology and 
compared it with grid and ring topology. He also gave the 
significant conclusion that if all other parameters are fixed, there 
are no significant differences when topologies are changed. 

By testing on four problems (2 classic and 2 real-life problems: 
even parity 5, ant problem, routing and placing circuits on 
FPGAs, and medical diagnosing), Fernandez de Vega [17] 
showed that the best migration rate is between 5% and 10%. He 
also did a wider study on comparing different migration 
frequencies and gave the conclusion that the best convergence 
results appear when about 10% of trees from each sub population 
are sent every 5–10 generations. 

Concerning on sub population size, Calegari [16] showed that the 
solution which obtained with 4 islands of 40 trees each is better 
than that found with a single population of 160 trees. The solution 
obtained with 40 islands of 4 trees each is even better. 

According to the results above, we applied parallel genetic 
programming for the algorithm with the following parameters: 
topology is ring, migration rate is from 5% to 10%, migration is 
executed every 10 generations, and sub population size is 500 and 
260 for 2 islands and 4 islands, respectively. And the obtained 
results (Tables 4, 5, 8 and 9) show that the above parameters of 
the island model are rather suitable for this algorithm. 

3. EXPERIMENTS 
In order to evaluate the performance of the proposed algorithm, 
two real biological data namely response of fibroblasts to serum 
and Caulobacter and two breast cancer data were exerted. The 
comparisons between the proposed algorithm (Sequential GP) and 
seven other methods, namely binary support vector machine 
(Binary SVM) [5], single class support vector machine (Single 
SVM) [5], LogitBoost, logistic regression (LR) [25], linear 
discriminant analysis (LDA) [25], linear least square regression 
(LS) [25], and parallel genetic algorithm (Single GA) [6] were 
also fulfilled. 

The training processes of binary classification methods need the 
positive and the negative sets; whereas the proposed algorithm 
uses one set for the training process. So the training set of the 
proposed algorithm is the positive set of binary classification 
methods and the negative set of binary classification methods is 
randomly selected. 
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3.1 Transcriptomic and Proteomic Data 
The two data sets previously analyzed using clustering methods 
were employed. We classified the C. crescentus cell cycle 
controlled protein profiles [28–29] obtained from SWICZ server 
(http://proteom.biomed.cas.cz) and 517 genes monitored in 19 
different time points using DNA chips, representing the response 
of fibroblasts to serum [30] (http://genome-
www.stanford.edu/serum/clusters.html). Cluster analysis 
identified groups of profiles according to predefined similarity 
metrics by building a hierarchical tree of similarity between 
individual profiles and clusters of profiles. Cluster analysis 
partitioned the dataset into a set of disjoint groups according to a 
defined similarity threshold. As the method excludes user 
interaction, the groups of patterns were identified after the 
analysis of the clustering tree. We have chosen a different 
approach that consists of defining a template and performing the 
search of desired profiles using different algorithms – sequential 
GP, parallel GP and the published algorithms mentioned above. 

In order to make possible the mutual comparison of these methods 
and the cluster analysis, we selected the training sets for GP and 
the other algorithms by random selection from the clusters 
identified by the cluster analysis. Therefore, for each of the 
clusters, an initial training set consisting of randomly selected 
patterns from each cluster was created and the GP was applied for 
identification of other members of the cluster. The true and false 
positives were derived from a comparison with the results of the 
cluster analysis. 

Average expression profiles for the proteomic set (C. crescentus), 
and the clusters of transcriptomic set (fibroblast) identified by the 
original cluster analysis are shown in Figures 4–6 and the results 
for seven different algorithms are summarized in Tables 6 and 7. 

3.2 Breast Cancer Data 
The two breast cancer data that were normally used in many 
previous classification methods are also introduced. The 
Wisconsin Breast Cancer Database [18] was obtained from the 
University of Wisconsin Hospitals, Madison. Each instance has 
one of 2 possible classes: benign or malignant tumor. There are 
458 instances for benign class and 241 instances for malignant 
class. The Wisconsin Diagnostic Breast Cancer was first used in 
[19]. There are 569 instances each of which belongs to benign 
class or malignant class (357 benign, 212 malignant). Each 
instance is described by 30 real-valued attributes. Attributes are 
computed from a digitized image of a fine needle aspirate (FNA) 
of a breast mass. They describe characteristics of the cell nuclei 
present in the image. 

For both of breast cancer data sets, the training set and the test set 
were randomly selected and the rate of them is 50% – 50%. The 
results are listed in Tables 2 and 3. 

The Tables 4, 5, 8 and 9 show the results of sequential and 
parallel genetic programming (Parallel GP). For parallel genetic 
programming, the island model was applied. 

3.3 Discussion 
Clusters from microarray and proteomic experiments were chosen 
to cover different sizes of the target group and different group 
correlations, which range from 0.7 to 0.3. Results are summarized 
in Tables 6 and 7. As a measure of accuracy, we allowed the 
comparison of the different algorithms, and the original results of 
hierarchical clustering were chosen. Tables 6 and 7 show that the 

desired sensitivity was close to 1 for most of the algorithms. 
Variations can be seen between the transcriptomic and proteomic 
data which reveals that most of the non GP algorithms failed on 
the transcriptomic dataset. The GP methods showed the best 
results, with Se always equal to 1 and Sp ~ 0.9. 

Higher false positive rates, reflected in Sp, mean that the 
algorithm found expression profiles which did not belong to the 
cluster, defined by the hierarchical clustering algorithm. The 
reason is, that the hierarchical clustering groups objects according 
to their mutual similarity starting from the most similar pair and 
continuing by adding new groups or individuals, forming a 
clustering tree. Therefore, the similarity within the cluster is given 
not only by the similarity among the profiles, but also by the 
similarity to other closely related objects or clusters. For well 
separated clusters, this does not bring about any problems and the 
clusters are correctly identified; but for more fuzzy overlapping 
clusters, the classification can fail. In such a case, the single class 
classification based on pattern recognition gives better results 
than the clustering. The pattern recognition methods were able to 
find all similar profiles which were otherwise assigned by the 
clustering algorithm to different clusters. In this case, the GP and 
the other algorithms followed similar trends. 

Comparison of GP with SVM showed better performance of the 
GP algorithm, especially, when the parallel computational scheme 
was employed. Tables 4, 5, 8 and 9 show that in the parallel 
processing scheme, the accuracy of the algorithm increases with a 
growing number of islands. The advantage of GP is also in the 
requirement of only one training set whereas SVM requires two 
sets – the first comprised of profiles belonging to the target group, 
the second comprised of the rest. 

Another advantage of the presented GP scheme is the possibility 
to include a user interaction to the training process. After each 
training loop, the user can (but does not have to) check the results, 
change the training set and restart learning of the algorithm with 
this new set. This scheme allows for high flexibility in the 
definition of within group pattern similarity. 

In genetic programming, the influence of the individual variables 
and their combination in the best tree on the result can be done by 
analyzing the tree. In this case, this information is not necessary 
as we are not interested in the particular influence of the 
variables, but instead, the goal is to identify the profiles. If the 
program satisfies this criterion, the goal is reached. GP is a 
random process where the final tree is the result of random steps 
of crossover and reproduction and it can not be guaranteed that 
the final tree is optimal. This problem is usually bypassed by 
running the learning procedure several times and selecting the 
best result. Our procedure allows repeated training but in order to 
save computation time, it has not been used. 

4. CONCLUSIONS 
The presented algorithm falls into a class of single (one) class 
classification which has rapidly emerged in pattern recognition in 
the last few years. For the single class classification, we want, in a 
given dataset, to estimate a subset such that the probability that a 
test point drawn from the dataset lies outside of the subset equals 
some a priori specified value between 0 and 1. The goal is to find 
a function which is positive for the desired subset and zero or 
negative for the complement. In this paper, we presented evidence 
that genetic programming is suitable for this task, allowing for the 
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identification of user defined gene expression time series 
templates in a large set of profiles. 

The demand for identification of user defined templates of gene 
expression profiles increases with the availability of large scale 
gene expression data when a microarray or proteomic experiment 
covers whole cell cycles or other time evolving processes. Typical 
genome size and thus the number of genes immobilized on a 
microarray exceed tens of thousands. Thus the number of time 
series of an experiment also exceeds this number. To search 
through such a database is a nontrivial task. With the increasing 
knowledge about the regulation of gene expression, such datasets 
can be approached with already existing knowledge of the system. 
Therefore the initial classification of the profiles into disjoint 
clusters can now be replaced by a targeted search for genes which 
have a profile similar to the profile of a gene with already known 
function. Such genes are either under control of the same 
promoter or they participate in the same regulatory process. Their 
identification is essential for elucidating of their control and their 
role in the studied process. In such a case, approaching the 
problem as a single class problem is appropriate. Here, we 
showed that the parallel genetic programming gives very good 
results and in all tested cases outperformed previously published 
algorithms. 

The disadvantage of the evolutionary methods in general is their 
high computation intensive. We bypassed this problem by 
introduction of a parallel computational scheme which greatly 
increases the speed of computation. Moreover, the parallel 
scheme is suggested here improves the performance of the 
presented algorithm. Nowadays the multiprocessor machines are 
readily available and the parallel programming is no longer a 
domain of large computers. Therefore, implementation of the 
parallel algorithm presented here is feasible. 

Our algorithm combines robustness of genetic programming and 
the speed of parallel computing with the desired flexibility given 
by the user interaction. Once trained, the program can be applied 
to any other database of the same kind. Therefore it is possible to 
create a repository of classifiers for different template types and 
use them for different databases or apply them repeatedly to a 
growing database of proteomic or transcriptomic expression 
profiles. 

Table 1. Genetic programming parameters (powX is power of 
X) 

Population size 1000 

Maximum generation 500 

Probability of crossover 0.90 

Probability of reproduction 0.10 

Terminal set p1, p 2, …, pn 

Function set +, -, ×, pow2, …, pow10 
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Figure 1. ROC analysis of population size. 

0.94

0.95

0.96

0.97

0.98

0.99

1

0 0.05 0.1 0.15 0.2 0.25 0.3

1 - Sp

Se
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Figure 3. ROC analysis of probability of crossover. 
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Table 2. Wisconsin breast cancer database results of eight algorithms 

Sequential GP Binary SVM Single SVM LogitBoost LR LDA LS Single GA 

Class Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp 

Normal 0.996 0.791 0.959 0.753 1.000 0.347 1.000 0.381 0.991 0.389 0.973 0.795 1.000 0.360 1.000 0.803 

Malignance 1.000 0.919 0.983 0.939 0.983 0.908 1.000 0.858 1.000 0.858 0.975 0.869 0.992 0.802 1.000 0.926 

Table 3. Wisconsin diagnostic breast cancer results of eight algorithms 

Sequential GP Binary SVM Single SVM LogitBoost LR LDA LS Single GA 

Class Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp 

Normal 0.961 0.816 0.983 0.717 0.511 0.014 1.000 0.594 1.000 0.519 1.000 0.561 1.000 0.439 1.000 0.830 

Malignance 0.906 0.765 0.877 0.966 0.953 0.711 0.943 0.675 0.943 0.703 0.981 0.557 1.000 0.090 0.972 0.812 

Table 4. Wisconsin breast cancer database results of parallel genetic programming 

Sequential GP Parallel GP (2 islands) Parallel GP (4 islands) 

Class Se Sp Se Sp Se Sp 

Normal 0.996 0.791 0.996 0.836 0.996 0.862 

Malignanc
e 1.000 0.919 1.000 0.925 1.000 0.940 

Table 5. Wisconsin diagnostic breast cancer results of parallel genetic programming 

Sequential GP Parallel GP (2 islands) Parallel GP (4 islands) 

Class Se Sp Se Sp Se Sp 

Normal 0.961 0.816 0.970 0.833 0.970 0.854 

Malignanc
e 0.906 0.765 0.956 0.801 0.956 0.833 

Table 6. Transcriptomic database results of seven algorithms (null value means algorithm does not work) 

Sequent GP Binary SVM Single SVM LogitBoost LR LDA LS 
Cluster Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp 
263 – 296 1.000 0.868 0.900 0.830 1.000 0.841 0.600 0.671 0.500 0.729 0.650 0.750 0.650 0.795 

301 – 343 1.000 0.871 0.954 0.886 1.000 0.850 1.000 0.719 1.000 0.751 1.000 0.740 1.000 0.740 

394 – 407 1.000 0.964 1.000 0.759 0.857 0.958 - - 0.714 0.525 1.000 0.698 0.143 0.525 

493 – 517 1.000 0.947 1.000 0.782 1.000 0.878 1.000 0.439 0.800 0.376 1.000 0.411 1.000 0.411 

Table 7. Proteomic database results of seven algorithms 

Sequent GP Binary SVM Single SVM LogitBoost LR LDA LS 
Cluster Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp 

1-3 1.000 0.909 1.000 0.719 0.542 0.959 1.000 0.744 1.000 0.702 1.000 0.653 1.000 0.636 

4-7 1.000 0.922 1.000 0.861 0.800 0.809 1.000 0.930 1.000 0.887 1.000 0.878 1.000 0.844 

10-14 1.000 0.944 0.973 0.917 0.946 0.870 1.000 0.741 1.000 0.750 1.000 0.713 1.000 0.713 

17-19 1.000 0.718 1.000 0.637 0.800 0.889 1.000 0.748 1.000 0.748 0.900 0.741 0.700 0.756 

20-23 1.000 0.965 1.000 0.948 0.767 0.844 1.000 0.635 1.000 0.635 1.000 0.626 1.000 0.626 

1-7 1.000 0.901 0.963 1.000 0.889 0.989 1.000 1.000 1.000 1.000 1.000 0.967 1.000 0.967 

17-23 0.900 0.714 0.975 0.924 0.800 0.857 0.975 0.848 0.975 0.838 1.000 0.924 1.000 0.924 
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Table 8. Transcriptomic database results of parallel genetic programming 

Sequent GP Parallel GP (2 islands) Parallel GP (4 islands) 
Cluster Se Sp Se Sp Se Sp 

263 – 296 1.000 0.868 1.000 0.901 1.000 0.905 

301 – 343 1.000 0.871 1.000 0.907 1.000 0.918 

394 – 407 1.000 0.964 1.000 0.988 1.000 0.992 

493 – 517 1.000 0.947 1.000 0.959 1.000 0.965 

Table 9. Proteomic database results of parallel GP (null value means parallel computing does not give better result) 

 Sequent GP Parallel GP (2 islands) Parallel GP (4 islands) 

Cluster Se Sp Se Sp Se Sp 

1-3 1.000 0.909 1.000 0.926 1.000 0.942 

4-7 1.000 0.922 1.000 0.965 1.000 0.983 

10-14 1.000 0.944 1.000 0.982 - - 

17-19 1.000 0.718 1.000 0.882 1.000 0.956 

20-23 1.000 0.965 1.000 1.000 - - 

1-7 1.000 0.901 1.000 0.989 - - 

17-23 0.900 0.714 1.000 0.905 1.000 0.952 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The dendrogram of proteomic database. Figure 5. Average patterns of clusters of proteomic database.

Figure 6a. Cluster 263–296. 

Figure 6b. Cluster 301–343. 

Figure 6c. Cluster 493–517. 
Figure 6d. Cluster 394–407. 

Figure 6. Clusters of transcriptomic database. 
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