
A parallel Genetic Programming for Single Class
Classification

Cuong To
Institute of System and Synthetic Biology,

University of Évry
5 rue Henri Desbruères

91030 Evry Cedex, France
+33 (0)1 69 47 44 43

cuong.to@issb.genopole.fr

Mohamed Elati
Institute of System and Synthetic Biology,

University of Évry
5 rue Henri Desbruères

91030 Evry Cedex, France
+33 (0)1 69 47 44 43

mohamed.elati@issb.genopole.fr

ABSTRACT
In this paper, we present an algorithm based on genetic
programming for single (one) class classification that uses one set
containing similar patterns in training process. This type of
problem is called single (one) class classification, a novel
detection. The proposed algorithm was tested and compared to
seven other traditional methods based on two publicly available
transcriptomic and proteomic time series datasets and two public
breast cancer datasets. The results show that the algorithm could
find most similar patterns in the databases with rather low
misclassification rates. We also applied parallel genetic
programming for this algorithm and it proves that the island
model can give better solutions than sequential genetic
programming.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving – Heuristic
methods.

General Terms
Algorithms.
Keywords
Single class classification, one class classification, genetic
programming, island model.

1. INTRODUCTION
In the field of pattern classification, this problem is normally
divided into unsupervised learning (cluster methods) and
supervised methods. The supervised methods are based on expert
knowledge that are represented as training sets. Supervised
methods can be classified into binary classification, multi-class
classification (multi-class classification is usually converted into
multi binary classifications), and single class classification. The
training set of binary classification consists of two sub sets,
namely positive set and negative set. The positive set contains
similar (target) patterns which we would like to search; and the
negative set is opposite of the positive set. The negative set is
very important because it helps classifiers to recognize patterns
which differ from the positive set. However there are some

features of the negative set that can affect searching results such
as type of patterns and number of patterns.

Moreover, a fundamental assumption of binary classification is
that the training and test set have identical distribution [23] but
this assumption may not hold in practice. Li et al. [23] studied a
particular problem where the positive set is identically distributed
but the negative set may or may not be so and he gave a
significant conclusion that the negative set should not be used in
this setting and learning from positive and unlabeled sets fits this
special case quite well.
In recent years, the single (one) class classification has rapidly
emerged in pattern recognition field; the motivation is that the
negative set is either not present or not properly sampled.
According to Khan and Madden [1], single class classification can
be classified under three types 1) learning with positive examples
only; 2) learning with positive examples and some amount of
poorly distributed negative examples; 3) learning with positive
and unlabeled data.
Curry and Heywood [26, 27] proposed multiobjective one class
genetic programming, dynamic page-based linear genetic
programming was fulfilled as underlying learner.

Tax and Duin [3], [4] introduced a method called support vector
data description (SVDD), inspired by support vector machine.
This method computes a sphere with minimal volume covering a
set of patterns. The sphere boundary is described by support
vectors. Furthermore, the hyper-sphere model of SVDD can be
made more flexible by introducing kernel functions. Tax [2]
exerted a polynomial and a Gaussian kernel and found that the
Gaussian kernel gives better results for most data sets.

Scholkopf and Smola [5] constructed a hyper-plane which is
maximally distant from origin, with all data points lying on the
opposite side from the origin and such that the margin is positive.

Yu [7] proposed a single class classification algorithm called
mapping convergence that computes an accurate boundary of the
target class from positive and unlabeled data, and without labeled
negative data. The author concluded that without the negative set,
single class support vector machines requires a much larger
amount of positive training data to induce an accurate class
boundary.

To and Vohradsky [6] considered the single class classification as
the nonlinear programming. This algorithm finds the hyper-plane
that minimizes the distances from the hyper-plane and all points
of the positive set. The authors suggested using genetic algorithm
to solve the nonlinear programming and the parallel model of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright © 2013 ACM 978-1-4503-1964-5/13/07...$15.00.

1579

genetic algorithm called island model was also used to improve
the results. The algorithm was applied to microarray data.

Gaussian process methods are widely applied for regression and
classification problems. Gaussian process defines a distribution
over functions based on the central assumption that all function
values are jointly normal distributed. Kemmler et al. [24]
analyzed different measures derived from Gaussian process in
single class classification for visual object recognition.

Peng et al. [20] presented a threefold classifier from positive and
unlabeled documents. First, reliable negative documents are
identified by improved 1-DNF algorithm. Second, a set of
classifiers are built using support vector machine. Finally, genetic
algorithm search weights of classifiers to build the final classifier.

A naïve Bayes algorithm [21] learns from positive and unlabeled
documents. The results show that performance of this algorithm
can be comparable with naïve Bayes which learns from labeled
data.

De Comite et al. [8] proposed an algorithm based decision tree
which can take three sets, namely labeled examples, positive
examples, and unlabeled data as input. The decision tree is
generated by a modified version of C4.5. The proposed algorithm
was tested based on two public data sets called kr-vs-kp and adult.

Learning with positive and unlabeled examples [22] was
converted into learning with noise by labeling all unlabeled
examples as negative and use a linear function to learn. In order to
minimize the expected sum of false positive and false negative
error frequencies, the real-value conditional probability of
observing a positive label by performing logistic regression was
learnt.

Many various single class classification algorithms using global
Gaussian approximation, 1-nearest neighbor, neural network,
statistic methods were mentioned in [9]-[11].

In recent years, parallel models have been applied in evolutionary
computation and they show not only increase speed, but also give
high quality solutions [6]. In this paper, the island model was
applied and the results testify that the island model outperforms
sequential genetic programming.

In this work, we would like to introduce an algorithm using a set
of similar patterns for the training process. This kind of methods
is called single (one) class classification [1], [5]. The proposed
algorithm that is based on genetic programming is to search a
polynomial function describing the similarity among patterns of
the training set.

The outline of the paper is as follows. The section 2 introduces
some basic definitions, the problem statement, and the algorithm.
In section 3, we describe how our approach is evaluated and
compared to state of the art classification algorithms on a number
of real datasets, obtaining very good performance. Finally, we
conclude with a brief discussion.

2. METHOD
Let TS = {p1, …, pm} be the training set, where pi ∈ ℜn is a
pattern (point) and m is number of pattern in the training set. In
this paper, the term ‘pattern’ or ‘point’ is a time series vector

()T21 ..., , , iniii ppp=p , where n is number of time points
(measurements). At the beginning, the training set, TS, consists of

a small number of similar patterns. During the training process,
the genetic programming searches a curve which can fit all
patterns of the training set. Then patterns of database, which are
close to the curve, are selected. The selected patterns are desired
to have similarity to the template pattern.

Average Euclidean distance between two patterns

()T21 ..., , , rnrrr ppp=p and ()T21 ..., , , snsss ppp=p is
given by:

 ()∑
=

−=
n

i
sirisr pp

n
Dis

1

21) ,(pp (1)

Because each element of pattern is within the range [0, 1], so
Dis(pr, ps) is within [0, 1]. The value of zero means that ps and pr
are identical. The arithmetic mean of the distances between the
pattern, pr, and other patterns of the training set is given by

m

Dis
M

m

i
ir

r

∑
== 1

) ,(
)(

pp
p (2)

The pairs of values [pi, M(pi)] (i = 1..m) constitute the regression
problem. There are many methods to solve the regression
problem. According to Koza [12], genetic programming (GP) is
rather powerful method. Therefore, we decided to use GP to
search for a function that satisfies the following criterion.

)()(rr Mf pp ≈ (3)

In fact, if there exists the function describing (3), the type of that
function will not be known in advance. Of course, we can use
different mathematical methods to approximate functional
relationship; in this algorithm we use the polynomial function
because the polynomial function can be used to approximate to
any kinds of function, in principle. Therefore the fitness function
is given by

 ∑
=

=
m

i
ii M-f

1

)()(Fitness pp (4)

where
• m: number of patterns of the training set.
• f(pr): polynomial function.
• M(pi): mean of the distances between pattern, pi, and other

patterns of the training set computed by (2).

2.1 Classification
After the function is determined by genetic programming, the
function values of all patterns of the training set are calculated.
Based on these values, the mean, μ and standard deviation, σ can
be extracted. If the function value, f(a) of the tested pattern, a is
within the range [μ – 2σ, μ + 2σ], then the tested pattern, a is
defined as similar to the training set.

We selected the above criterion because most of natural
phenomenon comply the normal distribution and 95% of cases
fall into the range [μ – 2σ, μ + 2σ]. Although any criterion which
analyzes distribution of function values of all patterns of the
training set can be fulfilled, we selected the above criterion
because it is quite simple and results are satisfied.

1580

2.2 Performance Measurements
Performance of the algorithm was evaluated by using two popular
indicators [6], namely sensitivity (Se) and specificity (Sp), defined
as follows

C

TPSe = (5)

R

R FP
Sp

−
= (6)

with
• TP (true positive): the classifier predicts that the pattern is in

the training set and the pattern belongs to the training set.
• FP (false positive): the classifier predicts that the pattern is in

the training set but the pattern does not belong to the training
set.

• |C|: total number of patterns which are similar to the patterns
of the initial training set.

• |R|: total number of patterns which are different from the
patterns of the training set.

The sensitivity means that the rate of patterns is correctly
classified. The value one means all similar patterns are found. The
specificity is the rate of misclassified patterns. The value one
means no misclassified patterns found. The values of both Se and
Sp should approach one for good performance.

2.3 Genetic Programming Parameters
The influence of the genetic programming parameters, i.e.
population size, probability of crossover, and number of
generations, on the performance of the algorithm was tested with
a pattern of an arbitrarily chosen size n = 21 (the size is typical
for the temporal proteomic or transcriptomic experiments). As the
effect of the parameters was seen only for the level of added noise
greater than or equal 30%, we have created a test set by adding
30% noise to the patterns. The influence of the parameters was
evaluated using standard ROC curves.

Population size (number of trees in the population) is one of the
most important parameters of the GP. If the population size is too
small, it is difficult to find good solution; and if it is too large, the
computing time is long and the algorithm tends to overfit. Results
of Se and Sp for different values of GP parameters are
summarized in Figures 1–3.

Figures 1–3 show a very good overall performance of the algorithm
when both Sp and Se are close to 1 for most of the parameter
combinations. The algorithm achieves the best performance for a
population size equal to 1000 (Se = 1, Sp = 0.89) where the
maximum number of generations does not influence Se until the
value of 700 when the selectivity decreases, and when Sp
monotonously increases with the number of generations used. The
best combination of Sp and Se is reached for 500 and/or 700
generations. The sensitivity Se increases with the probability of
crossover, when for the value of 0.8 the Se = 1, Sp fluctuates around
0.9. The best combination of Se and Sp is reached when the
probability of crossover is equal to 0.9. The maximum depth of the
initial random tree was arbitrarily chosen as 7.

The selected control parameters of genetic programming are listed
in Table 1.

2.4 Parallel Genetic Programming
Among four major types of parallel genetic programming [12],
the island model is rather complicated and is the most popular
type [14]. In this section, the island model is generally introduced.
In the island model, the population is partitioned into sub
populations. Each sub population which is assigned to one
processor and runs independently is called island. After a
predefined number of generations, islands exchange trees with
each other called migration. This model has been being applied
for many problems [15–17] and shows that it not only increases
performance of algorithms but also gives results better than
sequential genetic programming.

In order to use the island model, we have to determine some
parameters as: topology, migration rate, migration frequency, and
sub population size.

There are some topologies as grid, ring, and random one.
Fernandez de Vega [17] introduced a random topology and
compared it with grid and ring topology. He also gave the
significant conclusion that if all other parameters are fixed, there
are no significant differences when topologies are changed.

By testing on four problems (2 classic and 2 real-life problems:
even parity 5, ant problem, routing and placing circuits on
FPGAs, and medical diagnosing), Fernandez de Vega [17]
showed that the best migration rate is between 5% and 10%. He
also did a wider study on comparing different migration
frequencies and gave the conclusion that the best convergence
results appear when about 10% of trees from each sub population
are sent every 5–10 generations.

Concerning on sub population size, Calegari [16] showed that the
solution which obtained with 4 islands of 40 trees each is better
than that found with a single population of 160 trees. The solution
obtained with 40 islands of 4 trees each is even better.

According to the results above, we applied parallel genetic
programming for the algorithm with the following parameters:
topology is ring, migration rate is from 5% to 10%, migration is
executed every 10 generations, and sub population size is 500 and
260 for 2 islands and 4 islands, respectively. And the obtained
results (Tables 4, 5, 8 and 9) show that the above parameters of
the island model are rather suitable for this algorithm.

3. EXPERIMENTS
In order to evaluate the performance of the proposed algorithm,
two real biological data namely response of fibroblasts to serum
and Caulobacter and two breast cancer data were exerted. The
comparisons between the proposed algorithm (Sequential GP) and
seven other methods, namely binary support vector machine
(Binary SVM) [5], single class support vector machine (Single
SVM) [5], LogitBoost, logistic regression (LR) [25], linear
discriminant analysis (LDA) [25], linear least square regression
(LS) [25], and parallel genetic algorithm (Single GA) [6] were
also fulfilled.

The training processes of binary classification methods need the
positive and the negative sets; whereas the proposed algorithm
uses one set for the training process. So the training set of the
proposed algorithm is the positive set of binary classification
methods and the negative set of binary classification methods is
randomly selected.

1581

3.1 Transcriptomic and Proteomic Data
The two data sets previously analyzed using clustering methods
were employed. We classified the C. crescentus cell cycle
controlled protein profiles [28–29] obtained from SWICZ server
(http://proteom.biomed.cas.cz) and 517 genes monitored in 19
different time points using DNA chips, representing the response
of fibroblasts to serum [30] (http://genome-
www.stanford.edu/serum/clusters.html). Cluster analysis
identified groups of profiles according to predefined similarity
metrics by building a hierarchical tree of similarity between
individual profiles and clusters of profiles. Cluster analysis
partitioned the dataset into a set of disjoint groups according to a
defined similarity threshold. As the method excludes user
interaction, the groups of patterns were identified after the
analysis of the clustering tree. We have chosen a different
approach that consists of defining a template and performing the
search of desired profiles using different algorithms – sequential
GP, parallel GP and the published algorithms mentioned above.

In order to make possible the mutual comparison of these methods
and the cluster analysis, we selected the training sets for GP and
the other algorithms by random selection from the clusters
identified by the cluster analysis. Therefore, for each of the
clusters, an initial training set consisting of randomly selected
patterns from each cluster was created and the GP was applied for
identification of other members of the cluster. The true and false
positives were derived from a comparison with the results of the
cluster analysis.

Average expression profiles for the proteomic set (C. crescentus),
and the clusters of transcriptomic set (fibroblast) identified by the
original cluster analysis are shown in Figures 4–6 and the results
for seven different algorithms are summarized in Tables 6 and 7.

3.2 Breast Cancer Data
The two breast cancer data that were normally used in many
previous classification methods are also introduced. The
Wisconsin Breast Cancer Database [18] was obtained from the
University of Wisconsin Hospitals, Madison. Each instance has
one of 2 possible classes: benign or malignant tumor. There are
458 instances for benign class and 241 instances for malignant
class. The Wisconsin Diagnostic Breast Cancer was first used in
[19]. There are 569 instances each of which belongs to benign
class or malignant class (357 benign, 212 malignant). Each
instance is described by 30 real-valued attributes. Attributes are
computed from a digitized image of a fine needle aspirate (FNA)
of a breast mass. They describe characteristics of the cell nuclei
present in the image.

For both of breast cancer data sets, the training set and the test set
were randomly selected and the rate of them is 50% – 50%. The
results are listed in Tables 2 and 3.

The Tables 4, 5, 8 and 9 show the results of sequential and
parallel genetic programming (Parallel GP). For parallel genetic
programming, the island model was applied.

3.3 Discussion
Clusters from microarray and proteomic experiments were chosen
to cover different sizes of the target group and different group
correlations, which range from 0.7 to 0.3. Results are summarized
in Tables 6 and 7. As a measure of accuracy, we allowed the
comparison of the different algorithms, and the original results of
hierarchical clustering were chosen. Tables 6 and 7 show that the

desired sensitivity was close to 1 for most of the algorithms.
Variations can be seen between the transcriptomic and proteomic
data which reveals that most of the non GP algorithms failed on
the transcriptomic dataset. The GP methods showed the best
results, with Se always equal to 1 and Sp ~ 0.9.

Higher false positive rates, reflected in Sp, mean that the
algorithm found expression profiles which did not belong to the
cluster, defined by the hierarchical clustering algorithm. The
reason is, that the hierarchical clustering groups objects according
to their mutual similarity starting from the most similar pair and
continuing by adding new groups or individuals, forming a
clustering tree. Therefore, the similarity within the cluster is given
not only by the similarity among the profiles, but also by the
similarity to other closely related objects or clusters. For well
separated clusters, this does not bring about any problems and the
clusters are correctly identified; but for more fuzzy overlapping
clusters, the classification can fail. In such a case, the single class
classification based on pattern recognition gives better results
than the clustering. The pattern recognition methods were able to
find all similar profiles which were otherwise assigned by the
clustering algorithm to different clusters. In this case, the GP and
the other algorithms followed similar trends.

Comparison of GP with SVM showed better performance of the
GP algorithm, especially, when the parallel computational scheme
was employed. Tables 4, 5, 8 and 9 show that in the parallel
processing scheme, the accuracy of the algorithm increases with a
growing number of islands. The advantage of GP is also in the
requirement of only one training set whereas SVM requires two
sets – the first comprised of profiles belonging to the target group,
the second comprised of the rest.

Another advantage of the presented GP scheme is the possibility
to include a user interaction to the training process. After each
training loop, the user can (but does not have to) check the results,
change the training set and restart learning of the algorithm with
this new set. This scheme allows for high flexibility in the
definition of within group pattern similarity.

In genetic programming, the influence of the individual variables
and their combination in the best tree on the result can be done by
analyzing the tree. In this case, this information is not necessary
as we are not interested in the particular influence of the
variables, but instead, the goal is to identify the profiles. If the
program satisfies this criterion, the goal is reached. GP is a
random process where the final tree is the result of random steps
of crossover and reproduction and it can not be guaranteed that
the final tree is optimal. This problem is usually bypassed by
running the learning procedure several times and selecting the
best result. Our procedure allows repeated training but in order to
save computation time, it has not been used.

4. CONCLUSIONS
The presented algorithm falls into a class of single (one) class
classification which has rapidly emerged in pattern recognition in
the last few years. For the single class classification, we want, in a
given dataset, to estimate a subset such that the probability that a
test point drawn from the dataset lies outside of the subset equals
some a priori specified value between 0 and 1. The goal is to find
a function which is positive for the desired subset and zero or
negative for the complement. In this paper, we presented evidence
that genetic programming is suitable for this task, allowing for the

1582

identification of user defined gene expression time series
templates in a large set of profiles.

The demand for identification of user defined templates of gene
expression profiles increases with the availability of large scale
gene expression data when a microarray or proteomic experiment
covers whole cell cycles or other time evolving processes. Typical
genome size and thus the number of genes immobilized on a
microarray exceed tens of thousands. Thus the number of time
series of an experiment also exceeds this number. To search
through such a database is a nontrivial task. With the increasing
knowledge about the regulation of gene expression, such datasets
can be approached with already existing knowledge of the system.
Therefore the initial classification of the profiles into disjoint
clusters can now be replaced by a targeted search for genes which
have a profile similar to the profile of a gene with already known
function. Such genes are either under control of the same
promoter or they participate in the same regulatory process. Their
identification is essential for elucidating of their control and their
role in the studied process. In such a case, approaching the
problem as a single class problem is appropriate. Here, we
showed that the parallel genetic programming gives very good
results and in all tested cases outperformed previously published
algorithms.

The disadvantage of the evolutionary methods in general is their
high computation intensive. We bypassed this problem by
introduction of a parallel computational scheme which greatly
increases the speed of computation. Moreover, the parallel
scheme is suggested here improves the performance of the
presented algorithm. Nowadays the multiprocessor machines are
readily available and the parallel programming is no longer a
domain of large computers. Therefore, implementation of the
parallel algorithm presented here is feasible.

Our algorithm combines robustness of genetic programming and
the speed of parallel computing with the desired flexibility given
by the user interaction. Once trained, the program can be applied
to any other database of the same kind. Therefore it is possible to
create a repository of classifiers for different template types and
use them for different databases or apply them repeatedly to a
growing database of proteomic or transcriptomic expression
profiles.

Table 1. Genetic programming parameters (powX is power of
X)

Population size 1000

Maximum generation 500

Probability of crossover 0.90

Probability of reproduction 0.10

Terminal set p1, p 2, …, pn

Function set +, -, ×, pow2, …, pow10

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2

1 - Sp

Se

Figure 1. ROC analysis of population size.

0.94

0.95

0.96

0.97

0.98

0.99

1

0 0.05 0.1 0.15 0.2 0.25 0.3

1 - Sp

Se

Figure 2. ROC analysis of maximum generations.

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2

1 - Sp

Se

Figure 3. ROC analysis of probability of crossover.

1583

Table 2. Wisconsin breast cancer database results of eight algorithms

Sequential GP Binary SVM Single SVM LogitBoost LR LDA LS Single GA

Class Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp

Normal 0.996 0.791 0.959 0.753 1.000 0.347 1.000 0.381 0.991 0.389 0.973 0.795 1.000 0.360 1.000 0.803

Malignance 1.000 0.919 0.983 0.939 0.983 0.908 1.000 0.858 1.000 0.858 0.975 0.869 0.992 0.802 1.000 0.926

Table 3. Wisconsin diagnostic breast cancer results of eight algorithms

Sequential GP Binary SVM Single SVM LogitBoost LR LDA LS Single GA

Class Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp

Normal 0.961 0.816 0.983 0.717 0.511 0.014 1.000 0.594 1.000 0.519 1.000 0.561 1.000 0.439 1.000 0.830

Malignance 0.906 0.765 0.877 0.966 0.953 0.711 0.943 0.675 0.943 0.703 0.981 0.557 1.000 0.090 0.972 0.812

Table 4. Wisconsin breast cancer database results of parallel genetic programming

Sequential GP Parallel GP (2 islands) Parallel GP (4 islands)

Class Se Sp Se Sp Se Sp

Normal 0.996 0.791 0.996 0.836 0.996 0.862

Malignanc
e 1.000 0.919 1.000 0.925 1.000 0.940

Table 5. Wisconsin diagnostic breast cancer results of parallel genetic programming

Sequential GP Parallel GP (2 islands) Parallel GP (4 islands)

Class Se Sp Se Sp Se Sp

Normal 0.961 0.816 0.970 0.833 0.970 0.854

Malignanc
e 0.906 0.765 0.956 0.801 0.956 0.833

Table 6. Transcriptomic database results of seven algorithms (null value means algorithm does not work)

Sequent GP Binary SVM Single SVM LogitBoost LR LDA LS
Cluster Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp
263 – 296 1.000 0.868 0.900 0.830 1.000 0.841 0.600 0.671 0.500 0.729 0.650 0.750 0.650 0.795

301 – 343 1.000 0.871 0.954 0.886 1.000 0.850 1.000 0.719 1.000 0.751 1.000 0.740 1.000 0.740

394 – 407 1.000 0.964 1.000 0.759 0.857 0.958 - - 0.714 0.525 1.000 0.698 0.143 0.525

493 – 517 1.000 0.947 1.000 0.782 1.000 0.878 1.000 0.439 0.800 0.376 1.000 0.411 1.000 0.411

Table 7. Proteomic database results of seven algorithms

Sequent GP Binary SVM Single SVM LogitBoost LR LDA LS
Cluster Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp

1-3 1.000 0.909 1.000 0.719 0.542 0.959 1.000 0.744 1.000 0.702 1.000 0.653 1.000 0.636

4-7 1.000 0.922 1.000 0.861 0.800 0.809 1.000 0.930 1.000 0.887 1.000 0.878 1.000 0.844

10-14 1.000 0.944 0.973 0.917 0.946 0.870 1.000 0.741 1.000 0.750 1.000 0.713 1.000 0.713

17-19 1.000 0.718 1.000 0.637 0.800 0.889 1.000 0.748 1.000 0.748 0.900 0.741 0.700 0.756

20-23 1.000 0.965 1.000 0.948 0.767 0.844 1.000 0.635 1.000 0.635 1.000 0.626 1.000 0.626

1-7 1.000 0.901 0.963 1.000 0.889 0.989 1.000 1.000 1.000 1.000 1.000 0.967 1.000 0.967

17-23 0.900 0.714 0.975 0.924 0.800 0.857 0.975 0.848 0.975 0.838 1.000 0.924 1.000 0.924

1584

Table 8. Transcriptomic database results of parallel genetic programming

Sequent GP Parallel GP (2 islands) Parallel GP (4 islands)
Cluster Se Sp Se Sp Se Sp

263 – 296 1.000 0.868 1.000 0.901 1.000 0.905

301 – 343 1.000 0.871 1.000 0.907 1.000 0.918

394 – 407 1.000 0.964 1.000 0.988 1.000 0.992

493 – 517 1.000 0.947 1.000 0.959 1.000 0.965

Table 9. Proteomic database results of parallel GP (null value means parallel computing does not give better result)

 Sequent GP Parallel GP (2 islands) Parallel GP (4 islands)

Cluster Se Sp Se Sp Se Sp

1-3 1.000 0.909 1.000 0.926 1.000 0.942

4-7 1.000 0.922 1.000 0.965 1.000 0.983

10-14 1.000 0.944 1.000 0.982 - -

17-19 1.000 0.718 1.000 0.882 1.000 0.956

20-23 1.000 0.965 1.000 1.000 - -

1-7 1.000 0.901 1.000 0.989 - -

17-23 0.900 0.714 1.000 0.905 1.000 0.952

Figure 4. The dendrogram of proteomic database. Figure 5. Average patterns of clusters of proteomic database.

Figure 6a. Cluster 263–296.

Figure 6b. Cluster 301–343.

Figure 6c. Cluster 493–517.
Figure 6d. Cluster 394–407.

Figure 6. Clusters of transcriptomic database.

1585

5. ACKNOWLEDGMENT
We thank the anonymous referees for their pertinent suggestions.
We also thank R. Nicolle for careful reading of the manuscript.
This work is supported by the INCa (French National Institute of
Cancer) through the INCa project PL-2010-196.

6. REFERENCES
[1] Khan, S.S. and Madden, M.G. 2009. A survey of recent

trends in one class classification. In Proceedings of the 20th
Irish conference on Artificial intelligence and cognitive
science, 188–197.

[2] Tax, D. 2001. One class classification. PhD thesis, Delft
University of Technology.

[3] Tax, D. and Duin, R. 1999. Data domain description using
support vectors. In Proceedings of ESAN99, 251–256.

[4] Tax, D. and Duin, R. 1999. Support vector domain
description. Pattern Recognition Letters, 20, 1191–1199.

[5] Scholkopf, B. and Smola, J.A. 2002. Learning with kernels.
MIT Press.

[6] To, C. and Vohradsky, J. 2007. A parallel genetic algorithm
for single class pattern classification and its application for
gene expression profiling in streptomyces coelicolor. BMC
Genomics, 8:49.

[7] Yu, H. 2005. Single-class classification with mapping
convergence. Machine Learning, 61(1), 49–69.

[8] De Comite, F., Denis, F., Gillerson, R., Letouzey, F. 1999.
Positive and unlabeled examples help learning. In
Proceedings the 10th International Conference on
Algorithmic Learning Theory, 219-230.

[9] de Ridder, D., Tax, D., Duin, R. 1998. An experimental
comparison of one-class classification methods. In
Proceedings of the 4th Annual Conference of the Advacned
School for Computing and Imaging.

[10] Manevitz, L. and Yousef, M. 2000. Document classification
on neural networks using only positive examples. In
Proceedings of the 23rd annual international ACM SIGIR
Conference on Research and Development in Information
Retrieval, 304–306.

[11] Letouzey, F.D.F., and Gilleron, R. 2000. Learning from
positive and unlabeled examples. In Proceedings of
Algorithmic Learning Theory, 11th International
Conference.

[12] Koza, J.R. 1992. Genetic Programming: On the programing
of computers by means of natural selection. MIT Press, MA.

[13] Freitas, A.A. 2002. Data mining and knowledge discovery
with evolutionary algorithms. Springer Verlag, Berlin.

[14] Cantu-Paz, E. 2001. Efficient and accurate parallel genetic
algorithms. Kluwer Academic Publishers.

[15] Alba, E., Laguna, M., Luque, G. 2005. Workforce Planning
with a Parallel Genetic Algorithm. In Proceedings of the
CEDI-MAEB'05, 911–919.

[16] Calegari, P., Guidec, F., Kuonen, P., Kobler, D. 1997.
Parallel island-based genetic algorithm for radio network
design. Journal of Parallel and Distributed Computing:

Special Issue on Parallel Evolutionary Computing,
Academic Press, 47(1), 86–90.

[17] Fernandez de Vega, F. 2005. Parallel genetic programming.
Workshop of the 2005 IEEE Congress on Evolutionary
Computation.

[18] Mangasarian, O.L., Wolberg, W.H. 1990. Cancer diagnosis
via linear programming. SIAM News 23(5), 1-18.

[19] Street, W.N., Wolberg, W.H., Mangasarian, O.L. 1993.
Nuclear feature extraction for breast tumor diagnosis.
IS&T/SPIE 1993 International Symposium on Electronic
Imaging: Science and Technology, 861–870.

[20] Peng, T., He, F., Zuo, W. 2006. Text classification from
positive and unlabeled documents based on GA. In
Proceedings of the VECPAR.

[21] Denis, F., Gilleron, R., Tommasi, M. 2002. Text
classification from positive and unlabeled examples. In
Proceedings of the 9th International Conference on
Information Processing and Management of Uncertainty in
Knowledge-Based Systems.

[22] Lee, W.S., and Liu, B. 2003. Learning with positive and
unlabeled examples using weighted logistic regression. In
Proceedings of the 20th International Conference on
Machine Learning.

[23] Li, X., Liu, B., See-Kiong, Ng. 2010. Negative training data
can be harmful to text classification. In Proceedings of the
Conference on Empirical Methods in Natural Language
Processing.

[24] Kemmler, M., Rodner, E., Denzler, J. 2010. One-class
classification with Gaussian processes. In Proceedings of the
10th Asian conference on Computer vision, 489–500.

[25] Hastie, T., Tibshirani, R., Firedman, J. 2003. The elements
of statistical learning – data mining, inference, and
prediction. Springer.

[26] Curry, R., and Heywood, M. 2007. One-class learning with
multi-objective genetic programming. In Proceedings of the
2007 IEEE Systems, Man and Cybernetics conference, 1938–
1945.

[27] Curry, R., and Heywood, M. 2009. One-class genetic
programming. In Proceedings of the European Conference
on Genetic Programming, 1–12.

[28] Grunenfelder, B., Rummel, G., Vohradsky, .J, Röder, D.,
Langen, H., Jenal, U. 2001. Proteomic analysis of the
bacterial cell cycle. Proc. Natl. Acad. Sci. USA, 98, 4681–
4686.

[29] Vohradsky,J., Janda, I., Grünenfelder, B., Berndt, P., Röder,
D., Langen, H., Weiser, J., Jenal, U. 2003. Proteome of
Caulobacter crescentus cell cycle publicly accessible on
SWICZ server. Proteomics, 3, 1874-82.

[30] Iyer,V.R., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T.,
Lee, J.C., Trent, J.M., Staudt, L.M., Hudson, J.Jr., Boguski,
M.S., Lashkari, D., Shalon, D., Botstein, D., Brown, P.O.
1999. The transcriptional program in the response of human
fibroblasts to serum. Science, 283, 83–7.

1586

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

