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ABSTRACT

Throughout the years, researchers have reported a wide va-
riety of proposals to infer evolutionary histories from bio-
logical data. Recent studies suggested the use of matrices
of genetic distances to represent phylogenetic topologies in
population-based metaheuristics. A key question that must
be addressed is the choice of a particular method to build
phylogenies from evolutionary distances. In addition to this,
there is a growing need to overcome the problems that arise
when different optimality criteria describe conflicting hy-
potheses about the evolution of the input species. In this
paper, we tackle the phylogenetic inference problem by us-
ing a multiobjective algorithm with matrix representation
inspired by the bioluminescence of fireflies. Our main goal
is to study the behaviour of several clustering and neighbor-
joining methods applied to infer phylogenies from the dis-
tance matrices processed by our algorithm. Experimental
results on four real nucleotide data sets point out the ad-
vantages and disadvantages of each proposal, in terms of
multiobjective performance and processing times.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics;

1.2.8 [Problem Solving, Control Methods, and Search]:

Heuristic methods; G.1.6 [Optimization]|: Global optimiza-
tion
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1. INTRODUCTION

The understanding of the evolutionary events that gave
rise to modern species in Nature represents one of the most
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outstanding research topics in the field of Bioinformatics.
A phylogeny is a tree-shaped structure that describes an-
cestral relationships among species. Phylogenetic analyses
contribute interesting knowledge not only in Evolutionary
Biology, but also in a wide variety of scientific fields, such
as chemistry, medicine, paleontology, and ecology.

Throughout the years, there has been a growing interest in
developing new methodologies that formulate phylogenetic
inference as an optimization problem. The main goal is the
reconstruction of phylogenies according to a specific princi-
ple or optimality criterion. In this sense, we must bear in
mind several key issues. Firstly, we need to define new ap-
proaches to overcome the problems that arise when applying
classical methods. Modern biological data sets cannot be an-
alyzed by using exhaustive searches, due to the exponential
growth of the number of topologies in the tree search space
in accordance with the number of species under review [9].
Novel developments based on Bioinspired Computing have
been applied successfully to resolve this problem [11].

In second place, a wide variety of optimality criteria and
methods for inferring phylogenies can be found in the liter-
ature [17]. We can distinguish two main groups: character-
based methods, and distance-based methods. The first pro-
cedures aim to infer evolutionary relationships among or-
ganisms by processing directly their molecular sequences.
In DNA analyses, these sequences are represented as strings
of characters according to the alphabet ¥ = {A,C,G,T}.
Some examples of character-based approaches are maximum
likelihood [8] and maximum parsimony [10].

On the other hand, distance-based methodologies take as
input a matrix of genetic distances calculated from an es-
timation of the number of substitution events in molecular
chains, according to an evolutionary model that defines the
nature and the occurrence probability of such events. Exam-
ples of approaches based on distances are clustering methods
[26] and neighbor-joining methods [23]. Distance matrices
can also be applied as a useful way to represent individu-
als in population-based algorithms for inferring phylogenies
attending to character-based criteria [21].

When choosing a particular optimality criterion, we must
take into account the principles that define each methodol-
ogy. For example, while maximum likelihood seeks to find
the most likely genealogical relationships in accordance with
statistical measurements, maximum parsimony aims to find
the evolutionary tree that minimizes the amount of mutation
events throughout the tree. The decision on which method
should be used is not a trivial issue, as diverse optimality
criteria can give as a result the inference of conflicting re-



lationships from the same biological data [30]. This is one
of the reasons why phylogenetic inference can be formulated
as a Multiobjective Optimization Problem (MOP) [4]. By
means of multiobjective optimization, we aim to reconstruct
evolutionary histories that suppose an agreement between
different theories about the way species evolve in Nature.

In this paper, we propose a comparative study on distance
methods applied to a Multiobjective Firefly Algorithm (MO-
FA) for inferring phylogenetic trees according to maximum
parsimony and maximum likelihood [24]. Our main goal is to
assess the performance achieved by the proposal when five
tree-building methods are considered to infer phylogenetic
topologies from their corresponding matrix representations:
neighbor-joining (NJ), BIONJ, unweighted and weighted-
pair group methods with arithmetic means (UPGMA and
WPGMA), and complete-linkage clustering. Experimental
results on four real nucleotide data sets will be evaluated
from a multiobjective view by using the hypervolume met-
rics [29]. In addition to this, we will assess the relevance of
our proposal by comparing it with other authors’ multiob-
jective approaches and single-criterion biological methods.

This paper is organized as follows. In Section 2, we sum-
marize some of the most relevant approaches for inferring
phylogenies proposed in the literature. Section 3 introduces
the basis of phylogenetic inference. In Section 4, we detail
the different tree-building methods which are the scope of
this research. In Section 5, we explain our swarm intelligence
algorithmic design. Section 6 summarizes our experimental
methodology and shows experimental results. Finally, Sec-
tion 7 provides conclusions and proposes future work.

2. RELATED WORK

The enormous tree search space that must be considered
even with a low number of species motivate the NP-hard na-
ture of phylogenetic inference [9]. In recent years, new bioin-
spired and evolutionary proposals have arisen as an answer
to the needs of biologists. The design of efficient procedures
and the growing availability of biological sequences bring
closer the achievement of the ultimate goal in Phylogenet-
ics: the reconstruction of the Tree of Life. In this section, we
give account of several well-known bioinspired approaches to
phylogenetic inference proposed by other authors.

In 1990’s, Matsuda [20] and Lewis [19] laid the founda-
tions of Evolutionary Computation for phylogenetic recon-
struction under the maximum likelihood criterion. Matsuda
proposed in 1995 the first genetic algorithm for protein phy-
logenetic inference from amino acid data. In 1998, Lewis
developed a genetic algorithm which reduced the computa-
tional times required by traditional heuristic-based methods
to analyze nucleotide data sets.

Later on, several authors, such as Skourikhine [25] and
Lemmon and Milinkovitch [18], followed this line of research,
proposing auto-adaptative and multipopulation genetic al-
gorithms to maximum likelihood. Phylogenetic analyses un-
der the maximum parsimony criterion were also tackled by
using evolutionary proposals, such as Congdon’s proposal:
GAPHYL [5]. The introduction of memetic algorithms to
hierarchical clustering reconstruction from distance matri-
ces was suggested by Cotta and Moscato in [7], showing sig-
nificant results in comparison with traditional branch-and-
bound techniques and other evolutionary proposals.

One key question that must be considered when design-
ing bioinspired approaches to Phylogenetics is how to rep-

1588

resent phylogenetic trees. Gottlieb et al. showed in [15]
that the use of Priifer sequences, a classical indirect rep-
resentation, leads to poor performances. In [6], Cotta and
Moscato discussed a variety of direct and indirect represen-
tations applied to reconstruct distance-based phylogenies.
In 2005, Poladian achieved meaningful results under the
maximum likelihood criterion by using an indirect represen-
tation based on distance matrices and neighbor-joining as a
genotype-phenotype mapping method [21]. Poladian’s work
proposed new genetic operators to act directly on distance
matrices, which give as a result topological transformations
in the shape of the inferred trees.

As new developments allow biologists to carry out efficient
analyses on modern biological data, novel trends of research
aim to address incongruences in Phylogenetics. By mod-
elling phylogenetic inference as a MOP, researchers’ efforts
focus on solving two key issues: firstly, the reconstruction
of evolutionary histories from sources of data with conflict-
ing information about ancestral relationships, and secondly,
the inference of trade-off phylogenies that optimize simul-
taneously two or more optimality criteria. Poladian and
Jermiin addressed the first problem and developed the first
multiobjective evolutionary algorithm proposed to Phylo-
genetics [22]. Afterwards, several authors applied multi-
objective metaheuristics following the second research line.
Coelho et al. [3] designed an immune-inspired algorithm
to reconstruct phylogenetic trees by minimizing the mean-
squared error and the minimal evolution criteria. Cancino
and Delbem proposed PhyloMOEA [1], a multiobjective ge-
netic algorithm for phylogenetic reconstruction attending to
maximum parsimony and maximum likelihood, achieving
promising results on four real nucleotide data sets.

We address in this work multiobjective phylogenetic in-
ference according to multiple optimality criteria, in particu-
lar, maximum parsimony and maximum likelihood. For this
purpose, we propose a study on the performance achieved
by a swarm intelligence proposal with matrix-based individ-
ual representation when different methods are considered to
reconstruct phylogenetic topologies from distance matrices.

3. PHYLOGENETIC INFERENCE

Phylogenetic methods analyze sequences of biological data
that characterize a set of IV species, with the aim of inferring
their ancestral evolutionary relationships. Each sequence is
composed by S sites or characters, which contain genetic
information, such as nucleotides, amino acids, and morpho-
logical data [17]. While character-based methods operate
directly over biological data, distance methods consider a
matrix of genetic distances generated from these sequences.
By processing such molecular or numerical data, we can gen-
erate a tree-shaped structure T' = (V, E) that represents a
hypothesis about the evolutionary events that gave as a re-
sult the species characterized by the input data.

In a phylogenetic tree T, the results of the evolutionary
history, this is, the input species, are located in the leaves,
as terminal nodes in V. Internal nodes in V represent hypo-
thetical ancestors, which are connected to their descendants
by branches in E. A branch can be associated to a float
type value known as branch length, which defines the evolu-
tionary distance between two related species. This distance
can be measured in terms of evolutionary times or mutation
events which motivated changes in genetic sequences.

Optimality criteria methods seek to describe an evolution-



ary history according to an objective function that assess the
quality of the inferred phylogeny. In this work, we will per-
form multiobjective phylogenetic analyses according to two
criteria: parsimony and likelihood.

3.1 Maximum Parsimony

The evolution of genetic sequences depends on the oc-
currence of mutation events which motivate morphological
changes. A maximum parsimony approach aims to recon-
struct those evolutionary histories that minimize the num-
ber of mutation occurrences to explain the observed data.
According to Ockham’s razor, parsimony approaches con-
sider that the simplest evolutionary hypothesis should al-
ways be preferred. When computing parsimony trees, an-
cestral sequences must be assigned from the knowledge pro-
vided by the input data. Fitch’s proposal [10] can be applied
to compute a set of ancestral assignments that minimizes the
amount of molecular changes throughout the tree.

Given a phylogenetic tree T = (V, E) inferred from a
dataset containing N sequences of S sites, its parsimony
score P(T) is given by the following equation [13]:

S
P(T)=Y_ > C(ai,by) )

=1 (a,b)EE

where (a,b) € F represents a genealogical relationship be-
tween two nodes a and b, a; and b; the values at the ith
site of the molecular sequences which characterize a and b,
and C/(a;, b;) the cost of evolving from a; to b;. The most
parsimonious hypothesis will be that phylogenetic topology
which minimizes P(T).

3.2 Maximum Likelihood

Likelihood is a statistical measurement that can be used
to conduct phylogenetic analyses [8]. The main goal is the
inference of the most likely evolutionary history from the se-
quences observed in the input data. Likelihood is one of the
most widely-used criteria in Phylogenetics, as it was defined
in the basis of statistical reliability. However, such reliability
implies complex computational requirements due to the high
number of parameters involved in likelihood computations,
including mathematical models that describe the probabil-
ity of observing mutation events at molecular level. These
evolutionary models must consider several factors related to
the way sequences evolve (such as transition/transversion
ratios and among-site rate variations) [17] in order to avoid
misleading results due to wrong assumptions.

Let D be the observed data, a set of N molecular se-
quences which contains S sites per sequence, m an evolu-
tionary model, and T = (V, E) a phylogenetic tree inferred
from D. We define likelihood as the conditional probability
of D given a hypothesis modelled by T" and m [9]:

S E
L[D,T,m]) = Pr[D|T,m] = H H (ret;)"is @)

where r; is the mutation probability for the site 4, t; the
evolutionary time between the nodes related by j € E, and
n;; the number of changes observed between the nodes con-
nected by j at the ith site. The phylogenetic tree that max-
imizes the likelihood function will be considered as the most
likely hypothesis under the assumptions given by m. In this
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work, likelihood values will be computed according to the
HKY85+ T evolutionary model [9].

4. DISTANCE-BASED METHODS

Distance approaches [2] are among the most popular meth-
ods in Phylogenetics. Distances describe an estimation of
the rate of substitutions between molecular sequences, ac-
cording to the assumptions given by an evolutionary model
[17]. As these methods operate over genetic distances, we
can distinguish two main tasks to be performed: the com-
putation of distance matrices from molecular data, and the
reconstruction of phylogenies from distance matrices.

Given N sequences that characterize the input species,
distance-based methods compute in first place a matrix data
structure M composed by N rows and N columns, where
each entry M][i, j] contains the genetic distance between the
sequences that characterize the species (or groups of species)
i and j. In a second step, these methods build the phylogeny
by grouping iteratively the pair of species in M which opti-
mize a specific criterion. Figure 1 shows an example of this
methodology, in comparison with a character-based one.

Sequence data file
Human ATGGCTTCTGGAA ...
ATGGCTTCTGGAA ...
ATGGCTTCCAGAA ...
ATGGCTTCCAGAA ...
ATGGCTTCCGAAA ...
ATGGCTTCTGGAA ...

Distance matrix

Human|Gorilla|Squirrel] Owl | Spider| Chimp)
0.000 | 0.013| 0.179 |0.155/0.161|0.008
0.013 /0.000| 0.179 0.008
0.1790.179| 0.000 0174
0.155 /0.155 | 0.074 0.150
0.161 1 0.161 | 0.078 0.158
0.008 [0.008| 0.174 0.000

o
Cor,

GTATTTCCATATTTAA
GCCTGTATTTCCATAT
ATTTCCATATTTCAAT
ATTTCCATATTTCAGT
TATTTCCATATTTCAG
TGTATTTCCATATTTA

Gorilla
Character-based method

Squirrel
owl
Spider
Chimp

Squirrel

Oy,

B

%

N
§
&

WP

owl Gorilla

Human
Gorilla
Squirrel|
owl
Spider
Chimp

Distance-based method

—— >

0.155
0.074]
0.000
0.068;
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Figure 1: Character-based and distance-based phy-
logenetic reconstruction

The computation of genetic distances can also be car-
ried out by considering a phylogenetic topology with branch
length values. In this way, we can establish a correspondence
between distance matrices and phylogenetic topologies. In
this study, we will focus on two tree-building strategies: clus-
tering analysis and neighbor-joining.

4.1 Clustering Methods

Clustering analysis is a traditional approach to build phy-
logenetic topologies from distances. These methods are de-
fined on the basis of the molecular clock assumption, which
considers that the rates of molecular changes in sequences
show a clocklike behaviour [9]. The results of applying
these techniques are ultrametric rooted trees, which describe
equidistant paths from the root node to any terminal node.

Given a distance matrix M, a clustering method pro-
ceeds by selecting the entries corresponding to the species
or groups of species i,j that minimize the genetic distance
value. A partial phylogeny or cluster of species is generated
by connecting ¢ and j to a new node n;; which represents
their common ancestor. Branch length values are then com-
puted and M is updated with the distances to the new clus-
ter, which replace the entries corresponding to ¢ and j. The
algorithm follows these steps until M has been completely
processed, returning the inferred phylogeny. Algorithm 1
shows the pseudocode for a generic clustering procedure.



Algorithm 1 Generic Clustering Algorithm

Algorithm 2 Neighbor-joining Algorithm

1: repeat

2 1,7 < Select the indices i, j which minimize M, j]

3 n;ij < Create a new parent node and connect i, j to it

4: /*Assign branch lengths l; and l; from i and j to ng; */
5: nij.ly < M[i, 5]/2

6: nij.lj <~ M[Z,j]/2

7 /*Compute distances from n;; to the remaining groups*/
8 for k =1 to N do

9 Dlk] < Compute distances (M, nij;, k) /* k # 1,5 */
10: end for
11: M, N <« Update matrix (n;j, D)
12: T < Add new node (n;;)

13: until There are no groups to be proccessed

Most clustering methods follow different principles to com-
pute the distances to the new cluster (line 9 in Algorithm
1). We will focus on three clustering methods: UPGMA,
WPGMA, and complete-link clustering.

UPGMA [27] assigns the updated values in M by averag-
ing the distances according to the number of elements in the
new cluster. Let 7 be the number of species in a partial phy-
logeny. The distance from the cluster generated by grouping
i and j to each other group k is computed as follows:

( )M[i,k]—l—( )M[j Kl (3)

On the other hand, WPGMA [26] considers that all the
elements included in the new cluster have the same weight
in the computation of the distances:

..r
.+ 5.7

j.r

Dlk] it ir

MTi, k] + Mj, k]
AL AR )

Finally, in complete-link clustering [16], D[k] refers to the
largest distance from the items in the new cluster to k:

D[k] =

DIk] = max(M]i, k], M[j, k]) (5)
4.2 Neighbor-joining

The neighbor-joining (NJ) method was originally proposed
by Saitou and Nei [23]. This approach differs from cluster-
ing analysis in the fact that NJ does not assume a molecular
clock. As rates of molecular changes can evolve in different
ways among lineages, NJ addresses the analysis of complex
data sets by taking into account more realistic assumptions.

Algorithm 2 summarizes the main tasks in this algorithm.
Divergence values for each species (line 4 in Algorithm 2) are
considered when computing the length of the branches that
connect ¢ and j to the new parent node n;; (lines 9 and 10).
The assignment of new distances also differs from clustering
methods, defining D[k] as (M[i, k] + M[j, k] — M[i, 5])/2.

In the literature we can find new algorithmic designs which
try to modify this scheme. A well-known approach based
on NJ is BIONJ, reported by Gascuel [12]. This algorithm
was proposed with the aim of improving NJ in terms of
statistical error [9]. For this purpose, BIONJ introduces a
model of variances and covariances of evolutionary distances.
The main goal is to compute a factor A which minimizes
the sampling variances of distances in each iteration of the
algorithm. ) is applied to compute the distances from the
partial phylogeny to each other group k as follows:

D[k]

)\M[i, k?] + (1 — )\)M[j, k?] — )\ni]-.li — (1 — )\)n”l] (6)
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1: repeat
2: /*For each row i in M compute the divergence value u[i]*/
3: fori:lto]\]]\’do
4 uli] « 3 M[i,j]/(N - 2)
J(3#1)
5: end for
6: i,j + Select the indices i, j which minimize M[i, j] — u[i] — u[j]
7 ni; < Create a new parent node and join i, j to it
8: /*Assign branch lengths l; and l; from ¢ and j to ng; */
9: mgyli «— M, 5]+ 5 (uld] — ulh])
10:  nagdy « 1M1+ 3 (ali] - uli])
11: /*Compute distances from n;; to the remaining groups*/
12: for k = 1 to N do
13: DIk] = (M[i, k] + M[j, k] — M[3,5])/2 /* k #i,§ */
14: end for
15: M, N < Update matrix (n;j, D)
16: T « Add new node (n;;)

17: until There are no more than two groups to be proccessed
18: /*Connect final nodes u, v by a branch with length M[u,v]*/
19: T + Add new branch (u, v, Mu, v])

By comparing these distance methods, we try to discuss
which approach can lead our proposal to achieve improved
performances from a multiobjective point of view.

S. A BIOINSPIRED APPROACH
FOR INFERRING PHYLOGENIES

The Multiobjective Firefly Algorithm (MO-FA) is a mul-
tiobjective adaptation of a novel bioinspired algorithm pro-
posed by Yang in 2010, Firefly Algorithm (FA) [31]. This
proposal belongs to a family of metaheuristics inspired by
the swarm intelligence of social insects and other organisms
in Nature. A communication system based on brightness
and attractiveness governs the behaviour of fireflies. By
means of flashing lights, fireflies are able to attract part-
ners to their position. This attraction system depends on
three factors: the light intensity, the distance between fire-
flies, and the degree of light absorption by the environment.

Fireflies with the brightest flashing light patterns will be
preferred by their potential partners. In an algorithmic con-
text, this collective behaviour is modelled by identifying the
light intensity with the quality of the solution associated to
a firefly. In this way, the firefly population will seek for high-
quality solutions, conducting the exploration of the search
space according to the information provided by the swarm.
In our multiobjective proposal, the dominance concept [4] is
applied to assess the quality of solutions.

In order to adapt this algorithm to phylogenetic infer-
ence, we must define a proper individual representation. In
this work, phylogenetic trees will be represented by their
corresponding distance matrices, generated according to the
evolutionary distances given by branch length values. The
algorithm will operate over these matrices and phylogenetic
topologies will be inferred by using the distance-based meth-
ods explained in Section 4.

MO-FA takes as input the following parameters, defined
according to the elements that affect the behaviour of fire-
flies: dataset (data to be analyzed), swarmSize (population
size), numGenerations (maximum number of generations),
Bo (attractiveness factor), v (absorption coefficient), and «
(randomization factor). The output will be a set of Pareto
solutions according to the parsimony and likelihood princi-
ples. Algorithm 3 summarizes the main tasks in MO-FA.

Firstly, fireflies are initialized by selecting phylogenetic



Algorithm 3 MO-FA Scheme

1: Initialize the population (X, dataset, swarmSize)

2: for numlter = 1 to numGenerations do

3 for r = 1 to swarmSize do

4: for s = 1 to swarmSize do

5: if X; = X, then

6: Move X, towards X, (X,.M, X;.M, Bo, v, &)

7 end if

8: end for

9: Apply a distance method to infer the tree X,..T (X,.M)
10: Evaluate solution (X,..T")
11: end for
12: Update Pareto set with the most promising solutions (X)
13: end for
14: Return Pareto set

topologies from a repository of 1000 phylogenies, 500 gener-
ated by maximum parsimony techniques, and the remaining
500 by maximum likelihood. These starter trees are evalu-
ated and their distances matrices are computed afterwards.
Each firefly associated to a dominated solution will be up-
dated with the knowledge provided by the most promising
phylogenies generated by the algorithm. Let X, be a firefly
dominated by X, and X,.M, X;.M the NxN distance ma-
trices related to X, and X, respectively. We compute the
overall distance 0,5 that separates X, from X as follows:

Brs = | DD (XrMli, j] — Xo.Mli, j])?

i=1 j=1

(7)

Once drs has been calculated, we update each entry in
X,.M by using a movement formula which takes into ac-
count the attractiveness factor 5o, the absorption coefficient
v, and the randomization factor «. This last parameter in-
troduces some randomness with the aim of allowing the al-
gorithm to perform searches on undiscovered regions of the
search space. Equation 8 describes this updating step.

X M([i, 5] =X0.M[i, j] + Boe "% (Xs.M[i, j] — X».M[i, 5])
+ a(rand|0,1] — %)
(8)

After the distance matrix has been modified, the result-
ing phylogenetic topology is inferred by using one of the
tree-building methods we consider in this study. When we
use for this purpose clustering analysis, a gradient optimiza-
tion step is carried out to correct branch length values on
non-ultrametric data sets. Finally, parsimony and likelihood
scores are computed for the inferred phylogeny.

These steps are repeated until all dominated fireflies have
been processed. In the final steps of a generation, the set of
most promising Pareto solutions is updated, and the extreme
points in this Pareto set are optimized by using a topological
search methodology [13]. A more detailed explanation and
further details about MO-FA can be found in [24]

6. EXPERIMENTAL RESULTS

In this section we explain the experimental methodology
we have followed to assess the performance achieved by MO-
FA when different tree-building methods are considered. We
have configured the input parameters of the algorithm in ac-
cordance with our previous work [24], where different com-
binations of £, v, and « were studied to find an optimal
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configuration. The final values for each parameter are the
following: swarmSize = 100, numGenerations = 100, Sy =
1, v = 0.5, and o = 0.05.

Table 1: Experimental methodology: data sets

Dataset Sequences  Sites per sequence Description

rbcL_55 55 K rbcL gene from green plants
mtDNA_186 186 16608 Human mitochondrial DNA
RDPII 218 218 4182 Prokaryotic RNA
ZILLA 500 500 759 rbeL plastid gene

In this study, we have performed phylogenetic analyses
under the HKY 85+ I' evolutionary model on four real nu-
cleotide data sets from the literature [1], given by Table 1.
30 independent runs of the algorithm were carried out for
each dataset and distance method. Phylogenetic results have
been evaluated from a multiobjective perspective by apply-
ing the well-known hypervolume metrics [29]. Table 2 gives
account of the reference points used to compute hypervol-
ume. The processing times required by each configuration
have also been captured (using 16 OpenMP threads), in or-
der to make possible a comparison in terms of quality of
solutions and computational complexity.

Table 2: Reference points for hypervolume
Tdeal reference point Nadir reference point
Dataset Parsimony  Likelihood Parsimony  Likelihood
rbcL_55 4774 -21569.69 5279 -23551.42
mtDNA_186 2376 -39272.20 2656 -43923.99
RDPII 218 40658 -132739.90 45841 -147224.59
ZI1LLA_500 15893 -79798.03 17588 -87876.39

Experimental results are presented in Table 3. For each
dataset and distance method, we show the parsimony and
likelihood scores corresponding to the best parsimony tree
(columns 2-3) and the best likelihood tree (columns 4-5)
from the execution which achieved the closest value to the
overall mean hypervolume, given by columns 6-7. The aver-
age processing times required for each proposal are given by
column 8. Figure 2 shows the corresponding Pareto fronts
generated for each dataset, according to the tree-building
method which was applied to perform the analysis.

Table 3: Experimental results
rbcL_55
Best parsimony tree  Best likelihood tree  Hypervolume metrics ~ Execution
Methods  Pars. Like. Pars. Like. Mean Std. Dev. Times (s)
UPGMA 4880  -21891.084 4882 -21885.359 66.488% 0.352 287.613
WPGMA 4874  -22085.094 4881 -21893.387 66.916% 0.481 269.203
Complete 4874 -22456.859 4885 -21898.369 66.491% 0.619 244.188
NJ 4874 -21857.617 4891 -21818.107  70.050% 0.067 395.729
BIONJ 4874 -21852.010 4891 -21819.188 70.039% 0.070 399.001
mtDN A_186
Best parsimony tree  Best likelihood tree  Hypervolume metrics  Execution
Methods ~ Pars. Like. Pars. Like. Mean Std. Dev. Times (s)
UPGMA 2451 -39985.988 2453 -39984.811 61.416% 1.307 3476.906
WPGMA 2453  -40054.581 2467  -39992.076 61.215% 0.827 3473.117
Complete 2451 -40014.640 2454 -39979.645 62.093% 0.810 2990.974
NJ 2431 -39980.181 2447 -39889.267 69.658% 0.012 3661.246
BIONJ 2431 -39963.162 2446 -39888.752  69.659% 0.005 3707.444
RDPII 218
Best parsimony tree  Best likelihood tree  Hypervolume metrics ~ Execution
Methods  Pars. Like. Pars. Like. Mean Std. Dev. Times (s)
UPGMA 41716 -136739.845 42307 -134953.526  65.779% 0.602 5774.361
WPGMA 41750 -137306.291 42447 -135066.775  65.714% 0.582 5455.675
Complete 41643 -138581.502 42605 -135193.930  65.593% 0.686 4761.591
NJ 41488 -136297.204 42813 -134167.447  74.084% 0.245 3888.291
BIONJ 41488 -136267.570 42831 -134173.576 74.086% 0.224 3862.010
Z1LLA_500
Best parsimony tree  Best likelihood tree  Hypervolume metrics ~ Execution
Methods ~ Pars. Like. Pars. Like. Mean Std. Dev.  Times (s)
UPGMA 16301 -82391.553 16354 -82001.417 55.409% 0.797 4800.333
WPGMA 16304 -81786.190 16314 -81776.387 57.339% 1.154 4796.018
Complete 16257  -87588.105 16293  -81632.727 59.588% 1.029 4774.700
NJ 16218  -81236.179 16310  -80966.641 69.064% 0.056 5974.231
BIONJ 16218  -81274.703 16310 -80966.525  69.070% 0.055 5998.784
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Figure 2: Pareto fronts generated for (A) rbcL_55, (B) mtDNA_186, (C) RDPII_218, and (D) ZILLA 500

According to the hypervolume values referenced in Table
3, there are significant differences between neighbor-joining
methods and clustering techniques. NJ and BIONJ outper-
form the remaining approaches in terms of multiobjective
performance and quality of the inferred trees in all the data
sets. By analyzing results on ZILLA 500, we can observe
that this improvement is more remarkable when complex
data sets with high number of species are considered. Fig-
ure 3 displays graphically these growing differences in hy-
pervolume values according with the complexity of the input
dataset. While the selection of the tree-building method im-
plies variations around 3.419% in hypervolume when analyz-
ing the rbcL_55 dataset, this choice has a strong impact on
ZILLA_500, giving rise to an average difference of 11.625%
in hypervolumes for this dataset. These results reveal the
importance of choosing a proper tree-building method based
on realistic assumptions to address phylogenetic searches.

Therefore, we can state that neighbor-joining methods fit
the considered biological data properly, allowing the algo-
rithm to generate reliable phylogenies from the processed
distance matrices for each data set. From a multiobjec-
tive point of view, hypervolume values show that BIONJ
slightly improves NJ, and the comparison of standard devi-
ations suggests that BIONJ can reduce the statistical vari-
ation from the average hypervolume values.

Concerning processing times, we can see that clustering
methods require less times than neighbor-joining approaches
in almost all data sets. This can be explained by analyz-
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Figure 3: Hypervolume comparison

ing the algorithmic complexities of each proposal. While
modern implementations of clustering procedures require
n? operations, neighbor-joining methods have an asymp-
totic complexity of O(n®) [9]. Among clustering methods,
complete-linkage represents the most efficient approach. For
the RDPII 218 dataset, processing times show that NJ and

BIONJ outperform significantly clustering methods, due to



the fact that MO-FA can generate a significant number of
non-dominated solutions, as seen in Figure 2. As the algo-
rithm evolves, the amount of solutions which join the Pareto
set grows, and the number of tasks which need to be per-
formed (including calls to tree-building and evaluation pro-
cedures) is reduced, compensating the algorithmic complex-
ity. This fact motivates improved times in comparison with
methods based on traditional clustering analysis.

In conclusion, although clustering techniques require re-
duced complexities, BIONJ and NJ outperform UPGMA,
WPGMA and complete-linkage in terms of multiobjective
performance. Among clustering methods, complete-linkage
shows the best processing times and is able to improve hy-
pervolume values for m¢DNA_186 and ZILLA_500. Con-
cerning neighbor-joining methods, BIONJ attains the best
hypervolume values in almost all data sets, and is able to
perform efficient phylogenetic analyses for RDPII 218. The
model of variances and covariances included in BIONJ de-
fines a statistically-consistent approach to generate phyloge-
netic trees, without introducing dramatic processing times
with regard to NJ. Therefore, our experimental results sug-
gest that a bioinspired multiobjective approach supported
by a statistically reliable tree-building method can be useful
to perform phylogenetic analyses on real data sets.

6.1 Comparisons with Other Proposals

In this subsection, we compare our swarm intelligence pro-
posal with other author’s approaches to phylogenetic recon-
struction. By comparing with other multiobjective propos-
als and state-of-the-art single-criterion methods, we aim to
evaluate the relevance of the proposal from a biological point
of view. For this purpose, we consider the results achieved
when adopting BIONJ as tree-building method.

In first place, we compare our approach with PhyloMOEA,
a multiobjective evolutionary algorithm proposed by Can-
cino and Delbem to conduct phylogenetic analyses according
to maximum parsimony and maximum likelihood [1]. Table
4 presents a comparison between the parsimony and likeli-
hood scores achieved by our proposal with regard to the re-
sults reported by Cancino and Delbem under the H K'Y 85+
T" evolutionary model in [1]. According to this table, an
algorithmic design which considers the knowledge gathered
by all the individuals in the swarm gives as a result relevant
solutions both from parsimony and likelihood perspectives,
in comparison with a traditional evolutionary approach.

Table 4: Comparisons with PhyloMOEA

MO-FA
Maximum parsimony tree ~ Maximum likelihood tree

Dataset Parsimony Likelihood Parsimony Likelihood

rbeL_55 4874 -21852.01 4891 -21819.19
mtDNA_186 2431 -39963.16 2446 -39888.75
RDPII 218 41488 -136267.57 42831 -134173.58
ZILLA 500 16218 -81274.70 16310 -80966.53

PhyloMOEA

Dataset Maximum parsimony score Maximum likelihood score

rbcL_55 4874 -21889.84
mtDN A_186 2437 -39896.44
RDPII 218 41534 -134696.53
ZILLA 500 16219 -81018.06

Secondly, we assess our results through a comparison with
two state-of-the-art biological methods: TNT [14], for max-
imum parsimony, and RAxML [28], for maximum likeli-
hood reconstruction. In Table 5, we can observe that our
swarm intelligence proposal generates high-quality phylo-
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genies from both perspectives. With regard to parsimony
scores, the comparison with TNT (column 2) shows that
our bioinspired design can reach the reference scores pro-
vided by one of the most reliable tools for maximum parsi-
mony. Additionally, in order to make possible a comparison
with RAXxML, we have performed new experiments by using
the GT R+ I model to compute likelihood values. Columns
3 and 4 in Table 5 show that MO-FA can improve the par-
simony and likelihood scores provided by RAxML in several
data sets. Therefore, the proposed multiobjective approach
represents a significant contribution from a biological per-
spective, obtaining quality results by combining multiobjec-
tive optimization techniques with collective intelligence.

Table 5: Comparisons with TNT and RAxML

MO-FA
Maximum parsimony score Maximum likelihood tree
Dataset Parsimony Parsimony  Likelihood
rbeL_5b 4874 4890 -21783.48
mtDNA 186 2431 2448 -39868.74
RDPII 218 41488 42833 -134082.27
ZILLA_500 16218 16305 -80608.46
TNT RAxML

Dataset Parsimony Parsimony  Likelihood

rbeL_55 4874 4893 -21791.98

mtDNA_186 2431 2453 -39869.63
RDPII 218 41488 42894 -134079.42

ZILLA_500 16218 16305 -80623.50

7. CONCLUSIONS

In this paper we have reported a comparative study on
the performance of several proposals for building phyloge-
nies from distance matrices: UPGMA, WPGMA, complete-
linkage, NJ, and BIONJ. These distance methods were ap-
plied to a multiobjective algorithm inspired by the collec-
tive behaviour of fireflies for inferring phylogenies, according
to maximum parsimony and maximum likelihood. Experi-
ments have been carried out on four real nucleotide data
sets, and experimental results have been evaluated in terms
of multiobjective performance and execution times.

Although processing times make clear the reduced com-
plexities of clustering methods, neighbor-joining approaches
can generate improved biological results, specially on com-
plex data sets. The hypervolume metrics suggests that a
configuration based on BIONJ leads the algorithm to the
best overall behaviour, outperforming clustering methods
even in processing times for the RDPII 218 dataset. Ad-
ditionally, comparisons with other multiobjective proposals
and biological single-criterion methods show the relevance
of our bioinspired metaheuristic.

As future research work, we will study the design of hybrid
schemes based on MPI and OpenMP to parallelize MO-FA,
with the aim of taking advantage of the characteristics of
modern multicore clusters. In addition to this, we will un-
dertake the development of other multiobjective metaheuris-
tics and new parallel designs for inferring phylogenetic trees
on data sets with a growing number of sequences.
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