
Protein Folding with Cellular Automata in the 3D HP Model

José Santos
Department of Computer

Science
University of A Coruña

Campus de Elviña s/n, 15071
A Coruña (Spain)
santos@udc.es

Pablo Villot
Department of Computer

Science
University of A Coruña

Campus de Elviña s/n, 15071
A Coruña (Spain)

pablo.villot@udc.es

Martín Diéguez
Department of Computer

Science
University of A Coruña

Campus de Elviña s/n, 15071
A Coruña (Spain)

martin.dieguez@udc.es

ABSTRACT
In the difficult ab initio prediction in protein folding only the
information of the primary structure of amino acids is used
to determine the final folded conformation. The complexity
of the interactions and the nature of the amino acid elements
are reduced with the use of lattice models like HP, which
categorizes the amino acids regarding their hydrophobicity.
On the contrary to the intense research performed on the
direct prediction of the final folded conformation, our aim
here is to model the dynamic and emergent folding process
through time, using the scheme of cellular automata but
implemented with artificial neural networks optimized with
Differential Evolution. Moreover, as the iterative folding
also provides the final folded conformation, we can compare
the results with those from direct prediction methods of the
final protein conformation.

Categories and Subject Descriptors
F.1 [Theory of Computation]: Computation by abstract
machines—Unbounded-action devices; I.2.6 [Artificial In-
telligence]: Learning—Connectionism and neural nets; J.3
[Computer Applications]: Life and medical sciences—
Biology and genetics

General Terms
Theory

Keywords
Protein folding, cellular automata, differential evolution

1. INTRODUCTION AND PREVIOUS WORK
Proteins are chains of amino acid residues that fold into

native 3D structures under natural conditions, just after be-
ing synthesized in the ribosomes. The thermodynamic hy-
pothesis states that this native conformation of the protein is
the one with lowest Gibbs free energy. That native structure
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is independent of the starting conformation and determines
its biological function. As experimental determination of
the native conformation is still difficult and time consuming,
much work has been done to forecast the native conforma-
tion computationally. Along this line, there are numerous
works on the direct prediction of the conformations of the fi-
nal protein structure, both secondary (local regular elements
such as helices and sheets) and tertiary structures.

In the case of the prediction of the final tertiary struc-
ture, such methods range from comparison methods with
resolved structures to the “ab initio” prediction. In the first
case the search space is pruned by the assumption that the
target protein adopts a structure close to the experimen-
tally determined structure of another homologous protein.
Nevertheless, the experimental determination of the protein
conformations remains far behind the rapid increase of the
number of known protein sequences.

Thus, the most difficult ab initio prediction is a challenge
in computational biology. It uses only the information from
the amino acid sequence of the primary structure [26]. In
such prediction there are models that simplify the complex-
ity of the interactions and the nature of the amino acid el-
ements, like the models that locate these in a lattice, or
detailed atomic models like the Rosetta system [25]. In the
first case, simplified or minimalist models are used. The use
of a reduced alphabet of amino acids in minimalist models is
based on the recognition that hydrophobic interactions are
a dominant force in protein folding, and that the binary pat-
tern of hydrophobic and polar residues (as in the HP lattice
model [4]) is a major determinant of the folding of a protein.

In these lattice models, given a primary sequence, the
problem is to search for the folding structure in the lattice
that minimizes the energy. The complexity of the problem
has been shown to be NP-hard [10, 28] and the progress was
slow; as Unger points out “minimal progress was achieved
in the category of ab initio folding” [27]. Along this line,
many authors have been working on several evolutionary
algorithms [9, 20, 22, 27, 28] or other natural computing
algorithms [2, 8, 23, 24, 29] on the direct prediction of the
native conformations using the HP model.

We address here the problem of protein folding modeling,
with the complex interactions between the amino acids of
the primary structure, considering it as an emergent result
of a dynamic process. The emergent behavior property was
studied in Artificial Life (AL) with methods like Cellular
Automata (CA) and Lindenmayer systems [12, 16]. We will
use CA to define the folding of a protein through time in
the 3 dimensional space of possible conformations imposed
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by simple lattice models like the HP model. CA have been
the focus of attention because of their ability to generate
a rich spectrum of complex behavior patterns out of sets
of relatively simple underlying rules and they appeared to
capture many essential features of complex self-organizing
cooperative behavior observed in real systems [12].

So, unlike the focus of the vast research already done on
the direct prediction of the secondary or tertiary structures
of the final folded conformations, our interest here is differ-
ent in that we will model the temporal and dynamic folding
process. The AL methods will define how the amino acids
interact through time to obtain a folded conformation. We
will extend the classical CA models using neural networks
for their implementation and we will use evolutionary com-
puting to automatically obtain the models.

Comments on previous works in protein folding model-
ing
Levinthal’s paradox [17] postulates that it is too time-consuming
for a protein to randomly sample all the feasible confirma-
tion regions for its native structure. However, proteins in
nature can still spontaneously fold into their native struc-
tures (the whole process typically takes only milliseconds
or even microseconds to finish). So, the folding pathway of
a protein is unclear, and a general assumption is that the
lower a structure is in the energy landscape, the closer the
folding is to the native state of the protein [6].

As commented, in most of the previous work in the field,
the different evolutionary methods worked only as search
algorithms of structures of minimal energetic configuration.
In the HP model the energy of a protein conformation is
minimized by maximizing the contacts between adjacent
hydrophobic amino acids, as detailed next. Nevertheless,
such works did not consider the folding dynamics through
time. For instance, the energetic component which mini-
mizes the distance between H (hydrophobic) amino acids,
used in Krasnogor et al. [14], facilitates the minimization
through time of the distance between such amino acids,
thanks to the different genetic operators used. However,
there was not an explicit definition of how an amino acid
must move in each time instant taking into account the po-
sitions of the neighbor amino acids. There are few previous
works in this line. Krasnogor et al. [15] used cellular au-
tomata and Lindenmayer systems to try to define the rules
and dynamics of such process, with a very limited success.
They used a one-dimensional cellular automaton with four
states that correspond to the possible movements in 2D lat-
tices, and the rules of the cellular automaton were obtained
with a genetic algorithm. In an extension of their work, the
rules took into consideration the specific amino acids the
rule was being applied to, thus connecting the CA model-
ing with a particular primary sequence. For example, for a
small sequence of 20 amino acids, only 50% of the runs led
to a set of rules that allowed achieving the optimal config-
uration. For larger sequences, the results were even poorer.
The work with Lindenmayer systems was only oriented to
find out sets of rules that captured a given folded structure,
but again without a connection between the rules and the
nature of the amino acids of the primary sequence.

In an alternative work by Calabretta et al. [1], the authors
tried to establish the tertiary structure modeling the folding
process through matrices of attraction potentials among the
20 amino acids. The matrices of 20x20 components were

obtained with a genetic algorithm, where each component
represented the attraction or repulsion force between two
amino acids in a given distance (100 Å). The fitness function
was measured taking into account the discrepancies of the
alpha-carbon bend and the torsion angles between the real
known structure and the artificial folded one. They obtained
success only in chains with very few amino acids (13 in the
example of their paper).

Also, more recently Danks et al. [3] presented a Lin-
denmayer system model which used data-driven stochastic
rewriting rules to fold protein sequences by altering the sec-
ondary structure state of individual amino acid residues.
The state of each residue was rewritten in parallel across the
whole protein. The change in a residue state depended on
the amino acid type of that residue and the amino acid types
and the current states of the neighboring residues on either
side. Seven secondary structure states were employed, based
on those used in the DSSP database of secondary structure
assignments, as well as their probabilities. Typical back-
bone torsion angles were obtained for each amino acid type
in each of the seven states from the database and used to
reconstruct the 3D structure of a protein at each derivation
step. They showed results for four protein sequences from
each major structural class. Local structure preference could
be seen to emerge for some residues in a sequence. However,
as indicated by the authors, the resulting structures did not
converge to a preferred global compact conformation.

For the modeling of the folding process through time we
propose here a new alternative which was not considered or
studied previously in the literature. Our main goal is the at-
tempt to model the temporal folding using CA-like systems,
using evolutionary computing to automatically obtain the
CA models that act over the multimodal energy landscape
inherent to the protein folding problem [29]. The CA mod-
els will determine the movements of the amino acids through
time and considering the restrictions of the HP model, and
they will be implemented with artificial neural networks us-
ing input information directly from the energy landscape.

Our work is inspired by the work of Krasnogor et al. [15]
in the use of CA for the modeling of the folding. Neverthe-
less, one of the main problems of the cellular automata used
by Krasnogor et al. [15] is the number of possible transi-
tion rules (which define the CA) that can be defined when
the considered neighborhood of a given amino acid is in-
creased, far beyond of the closest neighbors. The number of

possible CA is K(KN ), where K is the number of possible
states in each of the cells of the CA and N is the considered
neighborhood [16]. For instance, in [15], the authors consid-
ered K = 4 states in each cell (the 4 previous movements
of amino acids in a 2D lattice) and a neighborhood of 5 in
a one-dimensional cellular automaton, using the two closest
amino acids in both sides of the chain. Hence, there was

4(45) possible CA, an enormous number of CA.
Moreover, we must take into account that now, in the in-

tended modeling of the temporal folding, the evolutionary
method obtains the optimized CA after a temporal itera-
tive application, starting with an initial unfolded amino acid
chain, until the application of the CA rules ends with a fi-
nal and folded structure. Given these problems, we propose
the use of structures that can adequately manage the input
space of possible configurations at the same time that pro-
vide a good generalization capability. The neural structures
can be the perfect ones, as we detail in the next section.
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2. METHODS

2.1 HP lattice model
As indicated, to reduce the complexity of the problem of

protein folding, simplified models are used. In the HP model
[4] the elements of the chain can be of two types: H (hy-
drophobic residues) and P (polar residues). The sequence
is assumed to be embedded in a lattice that discretizes the
space conformation and can exhibit different topologies such
as 2D square or triangular lattices, or 3D cubic or diamond
lattices. To mimic hydrophobic interactions, each nearest-
neighbor contact between two H monomers (not consecutive
along the primary sequence) is assigned a favorable energy (-
1), irrespective of whether the contact is in the native struc-
ture or not, while other contacts are modeled as neutral.
That is, the basic HP energy matrix only implies attrac-
tions (H with H), and neutral interactions (P with P and P
with H). Given a primary sequence, in the intense research
performed on the direct prediction of the final conforma-
tion, the problem is to search for the folding structure in
the lattice that minimizes the energy. As commented, the
complexity of the problem is NP-hard [10, 28], so deter-
mining the native state conformations of HP sequences has
become a computational challenge. Although the HP model
is simple, it is non-trivial, captures many global aspects of
real proteins and still remains the hardness features of the
original biological problem [5]. For this reason, many au-
thors have been working on several evolutionary algorithms
[27, 29] for the direct prediction of the native conformations
using the HP model, as indicated in the previous section.

Using evolutionary computing to determine the protein
conformations under the HP model, one of the main deci-
sions is the genotypic encoding of the protein conformation
in the lattice. Three basic possibilities can be considered
to the representation of the folded sequence in the lattice:
Cartesian coordinates and two alternatives with internal co-
ordinates. In the first one, the location of each amino acid
is specified independently with its Cartesian coordinates.
With the internal coordinates the embedding of the pro-
tein is specified as a sequence of movements taken on the
lattice from one amino acid to the next. The first alter-
native with internal coordinates uses an absolute represen-
tation and movements are specified with respect to it. For
example, in the case of the cubic lattice: North, South, East,
West, Up and Down. A conformation is expressed as a se-
quence {N,S,E,W,U,D}n−1, which is the genetic material
in the individuals when this representation is used. In the
relative representation, relative movements are considered.
The reference system is not fixed and the next movement de-
pends on the previous one. Now, in the same case as before,
five moves are allowed: Forward, Turn Up, Turn Down, Turn
Left, Turn Right. The conformations are expressed now as
sequences {F,U,D,L,R}n−2. That representation has the
advantage of guaranteeing that all solutions are 1-step self-
avoiding (because there is no back move).

Both alternatives were used in evolutionary computing
works to encode the protein conformations. For example,
Unger and Moult [28] used the absolute representation of the
movements and Patton et al. [20] used the relative move-
ments to define the conformations. The results of Krasnogor
et al. [14] supported the use of the relative encoding when
they analyzed the impact of different factors when evolution-
ary algorithms are used to the problem. Nevertheless, there

Algorithm 2.1: Differential Evolution(Population)

for each Individual ∈ Population
do

{
Individual← InitializeRandomPositions()

repeat
for each Individual x ∈ Population

do



x1, x2, x3 ← GetRandomIndividual(Population)
// must be distinct from each other and x

R← GetRandom(1, n) // the highest possible

// value n is the dimensionality of the problem to be

// optimized

for each i ∈ 1 : n
// Compute individual’s potentially new position

// y = [y1, ..., yn]

do


ri ← GetRandom(0, 1)// uniformly in

// open range (0,1)

if ((i = R) || (ri < CR))
yi = x1i + F (x2i − x3i)

else yi = xi

if (f(y) < f(x)) x = y
// replace x with y in Population

until TerminationCriterion()
return (GetLowestFitness(Population))
// return candidate solution

is not an ample study that determined which representation
is the best. We will use the relative representation of the
movements, because of the interesting property of avoiding
1-step self-conflicts.

2.2 Differential Evolution
Differential Evolution (DE) [21] is a population-based search

method. DE creates new candidate solutions by combin-
ing existing ones according to a simple formula of vector
crossover and mutation, and then keeping whichever candi-
date solution has the best score or fitness on the optimiza-
tion problem at hand. The central idea of the algorithm is
the use of difference vectors for generating perturbations in
a population of vectors. This algorithm is specially suited
for optimization problems where possible solutions are de-
fined by a real-valued vector. The basic DE algorithm is
summarized in the pseudo-code of Algorithm 2.1.

Differential Evolution needs a reduced number of param-
eters to define its implementation. The parameters are F
or differential weight and CR or crossover probability. The
weight factor F (usually in [0, 2]) is applied over the vector
resulting from the difference between pairs of vectors (x2

and x3). CR is the probability of crossing over a given vec-
tor of the population (x) and a candidate vector (y) created
from the weighted difference of two vectors (x1+F (x2−x3)).
Finally, the index R guarantees that at least one of the pa-
rameters (genes) will be changed in such generation of the
candidate solution.

The usual variants of DE choose the base vector x1 ran-
domly (variant DE/rand/1/bin) or as the individual with
the best fitness found up to the moment (xbest) (variant
DE/best/1/bin). To avoid the high selective pressure of the
latter, we used a tournament to pick the vector x1, which
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also allows us to easily establish the selective pressure by
means of the tournament size.

As Feoktistov [7] indicates, the fundamental idea of the
algorithm is to adapt the step length (F (x2 − x3)) intrin-
sically along the evolutionary process. At the beginning of
generations the step length is large, because individuals are
far away from each other. As the evolution goes on, the
population converges and the step length becomes smaller
and smaller, providing this way an automatic balance in the
search.

2.3 Protein folding modeling with neural cel-
lular automata

We used connectionist structures to implement the CA-
like systems that provide the folding process (we named the
scheme “neural cellular automaton”, neural-CA). The Arti-
ficial Neural Network (ANN) that implements the cellular
automaton provides the next movement of an amino acid,
whereas the inputs of the neural network are determined by
the consequences of each possible movement of the current
amino acid to which the neural model is applied. The same
neural network is applied to each amino acid of the sequence
sequentially, and this process is repeated through different
temporal iterations or steps across the full sequence of amino
acids. As we used the relative encoding of the movements to
represent a protein chain, the neural network provides the
relative movement for each amino acid position.

The individuals of the DE population code the models
that provide the folding process. The cellular automaton is
implemented by means of a simple feedforward neural model.
Hence, the individuals code the parameters that define the
neural model. As we used a standard and fixed transfer
function in the neural network nodes, the parameters are
the weights between the nodes of the neural network layers.

Inputs of the neural network
1. For each possible movement in current position or amino

acid i of the chain, we calculate the increment (posi-
tive or negative) of energy with respect to the current
movement in such position. If a movement implies a
collision in the amino acid i, then we consider a high
increment of energy for such movement.

2. For each of the possible movements in position i, a
greedy strategy several movements forward is applied.
That is, the next movements are defined by those that
provide the minimum energy. Once these posterior
movements are applied, the increments in energy (with
respect to the energy with the current conformation)
are also provided as inputs to the neural network. Hence,
for each possible movement in the current position or
amino acid, the network receives as input what would
be the increment of energy if the neural network de-
cided a greedy strategy.

Outputs of the neural network
Figure 1 represents the process but with the 2D case to
clarify the ANN use. The ANN has an output corresponding
to the 3 possible relative movements {F,L,R} (in 2D). In
the 3D case the network has 5 outputs corresponding to the 5
possible relative movements {F,U,D,L,R}. The neural-CA
decides which the most adequate movement in each situation
is.

Figure 1: Artificial neural network used for deter-
mining the next movement in each amino acid. The
inputs correspond to the energy increments (with
respect to the current energy) when the possible
movements are applied in the amino acid position
and when greedy movements are considered after
such possible movements.

For determining the inputs, as indicated before, all the
possible movements are applied in the current position and
the energy increments with respect to the current movement
are calculated, being inputs to the ANN (obviously one the
inputs is 0). Moreover, once each one of the movements is
applied, we follow a greedy strategy to change the protein
chain in the next N movements (being N a parameter to
tune). Again, the increment of energy of the resultant con-
formation, with respect to the current protein conformation,
is an input to the ANN (1 additional input corresponding
to each one of the possible movements in position i).

Note that this way, the ANN has a view of the energy
space in order to decide the most adequate movement in
each situation, taking into account that the ANN can apply
different movements than the greedy ones when it is applied
to the next chain positions. Figure 1 shows a scheme of the
feedforward ANN used, summarizing the input information
the ANN receives, using a hidden layer and an output layer
where each output node corresponds to each possible move-
ment. The output node with the highest activation value
determines the next movement.

Neighborhood considerations for energy calculation
In any case, for calculating the energy in each position or
amino acid, we calculate it as the HP energy but consider-
ing only a spatial neighborhood around the current amino
acid. This means that only the amino acid contacts that
are below a given threshold distance to the current amino
acid are considered (threshold distance D). Moreover, if the
chain presents collisions after a movement, we only consider
the amino acids of the chain until the point in which the
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first collision occurs. Hence, while moving all the nodes of
the chain, the protein conformation can pass through ille-
gal states, and it is one of the ANN responsibilities to try
to change the conformation in each amino acid position in
such a manner that there are no collisions in the immediate
neighborhood where the ANN is applied, in addition to try
to minimize the conformation energy.

Note also that this is the central idea of the use of cellular
automata models for defining an emergent process, as the
cellular automaton receives only the local information or
environment of a single element, whereas the iteration of
the cellular automaton, over all the elements and through
time, provides the emergent phenomena, like in our case the
emergent folding process.

Fitness definition
We use simulated evolution to optimize a given neural-CA.
This is applied to a protein chain and we want that the
iterative temporal folding, defined by the neural-CA, reaches
a given conformation with a given and explicit fitness, such
as the number of HH contacts in the basic HP model.

The process begins with the protein sequences unfolded
(all amino acids in a straight line). Then, the neural-CA is
applied to each of the amino acids of the protein chain, where
the neural-CA determines the next movement of such amino
acid. This procedure is repeated a given number of steps
until a final conformation is reached, where the neural-CA
determines that no more movements are applied, so the fit-
ness of such individual (encoded neural-CA) is given by the
final HH contacts and returned to the evolutionary method.
Moreover, in order that the neural network learns to avoid
infeasible solutions (with conflicts), if the neural network de-
termines a movement that generates a conflict in the position
where the current amino acid is moved, then the individual
has as fitness the energy accumulated until the previous sit-
uation without conflicts in the protein conformation. This
helps that the evolutionary population has a great diversity
of fitness, which permits to refine the ANN to not determine
movements with conflicts in the immediate neighborhood of
the current position.

Note that the fitness definition (we used the basic HP
energy matrix considering only the HH contacts in the final
folded structure) can be different to the definition of the
energy used to calculate the energy increments that are the
inputs to the ANN. In this case, we also used the information
of other contacts different to HH, as indicated in the Results
Section.

2.4 Benchmark protein sequences
We used benchmark sequences employed in different works

such as Unger and Mould [28] and Patton et al. [20]. The
test data consisted of a series of 10 randomly produced 27
length sequences. Table 1 shows the sequences used for the
3D cubic lattice, which were firstly published in the work of
Unger and Moult [28]. The global minimum energy value
for these random configurations is unknown.

3. RESULTS
First we can see an example of the folding provided by

the neural cellular automata methodology. Figure 2 shows
an example of the folding process provided by an evolved
neural network model (10 inputs, 6 hidden nodes, 5 out-
put nodes) for a simple protein sequence used by Patton

HP Chain

273d.1 PHPHPHHHPPHPHPPPPPPPPPPPHHP

273d.2 PHHPPPPPPPPPPHHPPHHPPHPPHPH

273d.3 HHHHPPPPPHPPPPPHHHPPPPPPPPH

273d.4 HHHPPHHHHPPPHPHPPHHPPHPPPHH

273d.5 HHHHPPPPHPHHPPPHHPPPPPPPPPP

273d.6 HPPPPPPHPHHHPPHHPPPHPPPPHPH

273d.7 HPPHPHHPPPHPPPPPHPHHPHPHPHH

273d.8 HPPPPPPPPPPPHPHPPPPPPPPHPHH

273d.9 PPPPPPPHHHPPPHPHHPPPHPPHPPP

273d.10 PPPPPHHPHPHPHPHPPHHPHHPHPPP

Table 1: Benchmarks sequences, for the cubic lat-
tice, used in the experiments.

et al. [20], which consists of 8 hydrophobic residues evenly
interspersed with two hydrophilic residues each (HPPHP-
PHPPHPPHPPHPPHPPH). In the minimal configuration,
the hydrophobic residues form a cube with the vertices con-
nected by hydrophilic “loops”. So, the optimized structure
has an optimum with 12 HH contacts perfectly centered in
the interior core of the final structure. The Figure shows sev-
eral intermediate configurations in the folding when move-
ments in an amino acid and in different steps are applied,
until the final folded conformation is obtained.

In this example and in all the runs presented in this section
with the different benchmark sequences, the same ANN con-
figuration was used. The number of posterior greedy move-
ments applied after each of the 5 possible relative movements
of the current amino acid was N = 3, in order to calculate
the 5 energy increments that are inputs to the ANN when
such posterior greedy movements are considered. For the
calculation of energy increments, the local neighborhood was
defined using a threshold distance D = 5, that is, including
all the topological contacts between amino acids with Eu-
clidean distance less or equal than 5 with respect to the
central amino acid. Such central position is given by the
previous amino acid of the one that is currently subject to
move. Finally, for each sequence we allowed a maximum
number of 10 folding steps, that is, the neural-CA is applied
over all the amino acids of the protein chain a maximum
number of 10 times, beginning with the first amino acid an
applying the neural-CA sequentially. If no movements are
determined by the neural network in a complete step over
the whole chain, then the process is ended providing the fi-
nal conformation defined by the neural-CA. For instance, in
the example of Figure 2, the evolved neural-CA needed only
5 steps to complete the folding. Moreover, the ANN applied
only 20.7% of greedy movements.

Regarding Differential Evolution, we used standard val-
ues: CR = 0.9 and F = 0.9, whereas the size of the tour-
nament to choose the base vector was 8% of the popula-
tion, which implies a low selective pressure when choosing
such vector to disturb. Since there is not a clear rule about
what the best number of individuals is, we used, for each
sequence, population size = number of amino acids x 15
(as suggested in [21] and [18]). The DE individuals code
the ANN weights in the range [-1,1] and decoded multi-
plying the encoded value by a constant MAX VALUE. We
used MAX VALUE=2 since this value allows to saturate the

1599



initial unfolded conformation amino acid 2, step 1 amino acid 3, step 1 amino acid 5, step 1

amino acid 8, step 1 amino acid 9, step 1 amino acid 11, step 1 amino acid 13, step 1

amino acid 15, step 1 amino acid 13, step 2 amino acid 21, step 2 amino acid 20, step 3

amino acid 5, step 4 amino acid 13, step 4 amino acid 4, step 5 amino acid 5, step 5

Figure 2: Different temporal steps in the folding process with protein sequence HPPHPPHPPHPPHPPHP-
PHPPH.

Seq. neural-CA (2) neural-CA (1) M et al GA [19] J&K GA [13] P et al GA [20] U&M GA [28]

273d.1 -9, -9 (4015, 10380) -9, -8.5 (12382, 14267) -9 (1450) -9 (15854) -9 (27786) -9 (1227964)

273d.2 -10, -10 (2766, 5020) -10, -10 (8185, 13107) -10 (5473) -10 (19965) -10 (81900) -9 (1225281)

273d.3 -8, -8 (1315, 4007) -8, -8 (7398, 8168) -8 (1328) -8 (7991) -8 (16757) -8 (1247208)

273d.4 -15, 15 (4032, 5330) -15, 15 (6752, 10795) -15 (5196) -15 (23525) -15 (85447) -15 (1207686)

273d.5 -8, -8 (1252, 3283) -8, -8 (2851, 5360) -8 (1184) -8 (3561) -8 (8524) -8 (1118202)

273d.6 -12, -11.8 (6416, 8148) -12, -11.6 (12322, 11344) -12 (18012) -11 (14733) -11 (44053) -11 (1226090)

273d.7 -13, -13 (3391, 5514) -13, -13 (11813, 16129) -13 (4920) -13 (23112) -13 (85424) -12 (1239519)

273d.8 -4, -4 (1331, 6011) -4, -4 (47973, 61029) -4 (654) -4 (889) -4 (3603) -4 (1248118)

273d.9 -7, -7 (2584, 3486) -7, -7 (2030, 3682) -7 (1769) -7 (5418) -7 (10610) -7 (1198945)

273d.10 -11, -11 (1779, 3734) -11, -11 (2895, 3458) -11 (3882) -11 (5592) -11 (16282) -11 (1174297)

Total eval. 28881, 59629 114601, 147339 43868 120640 380386 11113310

Table 2: Comparison of results with the benchmark sequences. In each column of results: Best energy value
(HH contacts) in different independent runs and, in parentheses, the minimum number of evaluations to find
the best value. After “,”: Average best energy value in the different runs and average number of evaluations
to find the best values in each run (in parentheses).
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nodes using a standard sigmoid function as transfer function
of the ANN nodes.

As the folding process provides the final protein confor-
mations, we can also test the capability of the neural-CA
models to obtain the final HP energy optima. In Table 2 we
included the comparison of the HH contacts of our final con-
formations after the iterative folding process, with respect
to previous works which used search methods to predict di-
rectly the final conformations. Table 2 includes the compar-
ison of our results with the ones in other works, such as the
results of Unger and Moult using a Genetic Algorithm (GA)
hybridized with a Monte Carlo local search [28] and Patton
et al. [20] with an improved GA using a relative encoding
of the amino acid movements.

Previous works summarize the results taking into account
independent runs for each protein sequence, and in each col-
umn it is specified the best energy value found in the dif-
ferent runs of the corresponding search algorithm. The en-
ergy values are reported using the basic HP energy function
to allow direct comparison to previously published results.
The best found solution for each sequence is indicated in
bold. The values in parentheses are the minimum number
of conformations scanned before the lowest energy values
were found in one of the runs. This is the case of the results
of Unger and Moult [28] from 5 independent runs. In the
case of Patton et al. [20] the authors do not specify how
many different independent trials were run. Additionally, in
our case, we included in the Table the average best energy in
the different runs and the average number of evaluations (fit-
ness calculation of individuals) for obtaining the best value
(second values after “,”). We used 10 independent runs for
each sequence. Note that the average number of evaluations
can be lower with respect to the best case if the same best
value was not obtained in all the runs (seq. 273d.6).

In the work of Unger and Moult [28], the authors used the
absolute representation of the movements. In their work, the
GA began with a population of identical unfolded configura-
tions. In addition to a one-point crossover operator, in each
generation a series of K mutations were applied to each in-
dividual in the population, being K equal to the length of
the encoding. The mutations were filtered using a Monte
Carlo acceptance algorithm which disallowed lethal config-
urations (those with collisions), always accepted mutations
resulting in better energy, and accepted increased energy
mutations based upon a threshold on the energy gain which
become stricter over time. As in their work lethal configura-
tions were rejected, the crossover operation was retried for
a given pair of parents until a nonlethal offspring was gen-
erated. With all these considerations, as indicated in the
table, the GA of Unger and Moult [28] operated on each
of the 27 length sequences for roughly 1.2 million function
evaluations, and obtaining better comparison results of per-
formance with respect to a Monte Carlo approach.

Regarding the work of Patton et al. [20], the authors used
the relative movements to define the conformations in the 3D
lattice and, on the contrary to Unger and Moult [28], they
allowed illegal conformations in the genetic population, but
penalizing them for positional collisions. This essentially al-
lows the search to proceed through illegal states. Patton et
al. [20] obtained results which compare quite favorably with
those of Unger and Moult, as shown in the table. For exam-
ple, as the authors remark in their work, for two of the 27
length samples, the minimal energies located by their algo-

rithm were better and required only one tenth the number
of energy evaluations.

In the work of Johnson and Katikireddy [13], the authors
report less number of evaluations (the best value in five tri-
als) for obtaining the best energy values, taking into account
that their algorithm uses a backtracking procedure to resolve
the positional collisions and illegal conformations that oc-
cur during the course of the genetic search, requiring a high
number of applications of the backtracking routine, as de-
tailed in their work. Also, in the work of Mansour et al. [19],
their GA was enhanced with heuristics that repair infeasi-
ble outcomes of the crossover operation and ensure that the
mutation operation leads to fitter and feasible candidate so-
lutions, obtaining again a decrease of necessary evaluations
over the previous works (the authors do not specify how
many runs were applied for each sequence).

In our case, regarding the inputs to the neural cellular au-
tomata, we considered two cases: neural-CA (1), only HH
contacts were considered in the calculations of energy incre-
ments; neural-CA (2), HH contacts and HP (or PH) contacts
were considered in the energy increment calculations. The
results shown in Table 2 in this second alternative were ob-
tained weighting the HH contacts with −1 and penalizing
the HP and PH contacts with a weight 0.5, in a similar way
to the HP Functional Model [11] which considers all con-
tact possibilities between amino acids. These parameters
provided us with the best results in most of the sequences.

For all sequences we allowed a maximum number of 30000
evaluations in the different runs (10). Note that now eval-
uations refer to the fitness calculation of the encoded neu-
ral cellular automata, and not to the evaluation of an en-
coded protein conformation as in the previous works com-
mented here. As shown in the table, the second configura-
tion, neural-CA (2), which uses more information in the cal-
culation of the energy increments (inputs to the neural-CA)
than the basic information provided by the HH contacts,
provided better results in terms of number of necessary eval-
uations to obtain the best values. This is because the ANN
has more detailed information to decide the movement to
apply in each situation. Or, in other words, the ANN has
a more detailed view of how is the immediate and dynamic
energy landscape when the protein is folding and in order to
decide the next movement.

We obtained in all cases the best value reported in the
previous works. In sequence 273d.8, using neural-CA (1),
more evaluations were necessary to obtain the best value
(−4), and because the few input information provided only
by the short number of possible HH contacts (a maximum of
125000 evaluations were applied in this case). Additionally,
using neural-CA (2), in most of the sequences, fewer indi-
vidual evaluations were required to obtain the best values.
Even the average number of necessary evaluations to obtain
the best values is lower with respect to, for example, the
values published in [13] for their best case (except 273d.8).
The better values (in terms of number of evaluations) in
some sequences in [19] are explained because of the filters
applied by the authors to the outcome of the crossover and
mutation operators in their enhanced GA.

4. CONCLUSIONS
We used cellular automata, implemented by means of con-

nectionist systems, to define the protein folding process through
time and using the HP lattice model. This new proposal is
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different from most on the previous work focused on the di-
rect prediction of the final protein conformations. The con-
nectionist model takes into consideration the vision of the
immediate energy landscape, instead of the spatial neigh-
borhood, to facilitate the decision of the amino acid move-
ments. The neural model acts like a CA-like system, over
all the simple elements or amino acids and through different
temporal steps until a final folded conformation is reached.
Thus, the process is treated as an emergent and dynamic
process.

Finally, as the iterative modeling by the neural-CA ob-
tains the final conformation using only the information of the
primary structure, we can compare the results in terms of fi-
nal HH contacts between our methodology and other search
methods that obtain or predict directly the final folded con-
formation. The results with benchmark sequences showed
that our method also needs fewer evaluations to obtain the
best final conformations.
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