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ABSTRACT 
Protein chains are typically large and consist of multiple domains 

which are difficult and computationally expensive to characterize 

using experimental methods. Therefore, accurate and reliable 

prediction of protein domain boundaries is often the initial step in 

both experimental and computational protein research. In this 

paper, we propose a straightforward yet effective method to 

predict inter-domain linker segments by using the amino acid 

compositional index from the amino acid sequence information. 

Each amino acid in the protein sequence is represented by a 

compositional index which is deduced from a combination of the 

difference in amino acid occurrences in domains and linker 

segments in training protein sequences and the amino acid 

composition information. Further, we employ simulated annealing 

to improve the prediction by finding the optimal set of threshold 

values that separate domains from inter-domain linkers. The 

performance of the proposed method is compared to the current 

approaches on two protein sequence datasets. Experimental results 

show superior performance by the proposed method when 

compared to the state-of-the-art methods for inter-domain linker 

prediction.  
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1. INTRODUCTION 
Proteins sequences are typically long and consist of multiple 

domains. Domains are the basic units of protein structure which 

can exist, evolve, and function independently. Proteins have two 

types of segments: non-linker segments, which contain domains 

and terminal residues and linker segments which connect 

functional domains. Inter-domain prediction within the protein 

sequence is crucial for accurate determination of structural 

domains. Downsizing of proteins without loss of their functions is 

one of the major targets of protein engineering [17, 19]. This has 

an important effect in reducing computational cost. Many domain 

prediction methods first detect domain linkers, and in turn predict 

the location of domain segments. The knowledge of domains is 

used to classify proteins, predict protein-protein interaction (PPI), 

and understand their structures, functions and evolution. 

Therefore, efficient computational methods for splitting proteins 

into structural domains are gaining practical importance in protein 

engineering research [9]. 

Several excellent methods for predicting inter-domain linkers 

segments have already been developed. Suyama and Ohara [13] 

developed DomCut as a simple method to predict linker segments 

among functional domains based on differences in amino acid 

index between domain and linker segments. The prediction is 

made by calculating the linker index from the SWISS-PROT 

database [1] of domain/linker segments. A sequence segment is 

considered a linker if it satisfies three conditions; connecting two 

adjacent domains, in the range from 10 to 100 residues and not 

containing membrane spanning segments. Despite the fact that the 

performance of the DomCut was reasonably acceptable, the 

information contained in the linker index (the frequency of amino 

acid residue in the linker or domain segment) is simply not 

sufficient to accurately predict linker segments because of the lack 

of biological knowledge input.  

Scooby-Domain (SequenCe hydrOphOBicitY predicts 

DOMAINs) web application was developed by George et al. [7] 

and extended by Pang et al. [11] to identify foldable segments in a 

protein sequence. Scooby-Domain uses the distribution of 

observed lengths and hydrophobicities in domains with known 3D 

structure to predict novel domains and their boundaries in a 

protein sequence. It utilizes a multilevel smoothing window to 

determine the percentage of hydrophobic amino acids within a 

putative domain-sized segment in the protein sequence. Each 

smoothing window calculates the ratio of hydrophobic residues it 

encapsulates along a sequence, and places the value at its central 

position. Using the observed distribution of domain lengths and 
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percentage hydrophobicities, the probability that the segment can 

fold into a domain or be unfolded is then calculated. Scooby-

Domain employs an A*-search algorithm to search through a 

large number of alternative domain annotations. The A*-search 

algorithm considers combinations of different domain sizes, using 

a heuristic function to conduct the search. The corresponding 

sequence stretch for the first predicted domain is removed from 

the sequence. The search process is repeated until there are less 

than 34 residues remaining, which is the size of the smallest 

domain; or until there are no probabilities greater than 0.33, which 

is an arbitrary cutoff, to prevent non-domain segments from being 

predicted as a domain. However, A* search suffers from an 

exponential computational time complexity which was 

highlighted by Russell and Norvig [12].  

Yoo et al. [16] introduced DomNet (Protein Domain Boundary 

Prediction Using Enhanced General Regression Network and New 

Profiles) which was trained using a compact domain profile, 

secondary structure, solvent accessibility information, and inter-

domain linker index to detect possible domain boundaries for a 

target sequence. The authors proposed a semi-parametric model 

that uses a nonlinear auto-associative standard regression neural 

network (EGRN) for filtering noise and less discriminative 

features. 

Chatterjee et al. [4] proposed the physicochemical properties as 

additional features to train support vector machine (SVM) 

classifier to improve the prediction of multi-domains in protein 

chains. The extracted attribute set consists of six different 

features; predicted secondary structure, predicted solvent 

accessibility, predicted conformational flexibility profile, amino 

acid composition, position specific scoring matrix (PSSM), and 

physico-chemical properties of amino acids.  

Bondugula et al. [2] introduced FIEFDom (Fuzzy Integration of 

Extracted Fragments for Domains) as a method to predict domain 

boundaries of a multi-domain protein from its amino acid 

sequence using a Fuzzy mean operator (FMO). Using the non-

redundant sequence database together with a reference protein set 

(RPS) containing known domain boundaries, the operator is used 

to assign a likelihood value for each residue of the query sequence 

as belonging to a domain boundary. FMO represents a special 

case of the Fuzzy nearest neighbor algorithm with the number of 

classes set to one. The approach is a three-step procedure. First, 

the position specific scoring matrix (PSSM) of the query sequence 

is generated using a large database of known sequences. Second, 

the generated profile is used to search for similar fragments in the 

RPS. Third, the matches with the proteins in RPS are parsed, and 

the domain boundary propensity of the query protein is predicted 

using a FMO. 

Ebina et al. [5] developed DROP as SVM, with a radial basis 

function (RBF) kernel, domain linker predictor trained by 25 

optimal attributes. The optimal combination of attributes were 

selected from a set of 3000 features using a random forest 

algorithm, which calculates the average decrease Gini index 

(MDGI), complemented with a stepwise feature selection.  The 

selected features were primarily related to secondary structures, 

PSSM elements of hydrophilic residues and prolines.  

The efficiency of DROP was evaluated by DS-All dataset [6, 15], 

CAFASP4 (http://www.cs.bgu.ac.il/~dfischer/CAFASP4/), and 

CASP8 FM (http://predictioncenter.org/casp8/). DS-All contains 

169 protein sequences with a maximum sequence identity of 

28.6% and 201 linkers. DROP achieved a prediction recall and 

precision of 41.3% and 49.4%, respectively, with more than 

19.9% improvement by the optimal features. DROP performances 

were further assessed using the Average Overlapped Score (AOS) 

[10] and the Normalized Domain Overlap (NDO) score [14]. The 

AOS is the ratio of correctly assigned residue number to the total 

number of residues. The NDO-Score provides a single value that 

evaluates (penalize/prioritize) both over- and under-predictions. 

DROP does not use sequence similarity to domain databases. One 

of the advantages of this approach is the use of random forest 

approach for feature selection. Instead of exhaustively searching 

all feature combinations, random forest was employed which 

provides rapid and competitive screening for the optimal features. 

However, random forest can possibly be trapped in local minima 

and suffers from over-prediction. As a result, DROP over-predicts 

domain linkers in single-domain targets of BDS and CAFASP4. 

In general, machine-learning based approaches are 

computationally expensive and often suffer from low prediction 

accuracy and susceptible to overfitting. Therefore, a simple 

method for identifying domain segments is desired. In this paper, 

we focus on the determination of domain-linker segments using 

amino acid compositional (AAC) index which predicts linker 

segments solely from the amino acid sequence information. The 

compositional index is deduced from the protein sequence dataset 

of domain-linker segments and the amino acid composition. A 

preference profile is then generated by calculating the average 

compositional index values along the amino acid sequence using a 

sliding window of varying sizes. Finally, a simulated annealing 

(SA) algorithm was employed to enhance the prediction by 

finding the optimal set of threshold values that separate domains 

from inter-domain linker segments. The rest of this paper is 

organized as follows. The next section presents our proposed 

method. Experimental results and discussion are presented in 

Section 3. Section 4 provides concluding remarks and future work 

directions. 

2. METHOD 
The proposed method consists of two main steps; calculating the 

compositional index and then refining the prediction by detecting 

the optimal set of threshold values that distinguish inter-domain 

linkers from non-linkers. In the first step, linker and non-linker 

segments are extracted from the training dataset and the 

differences in amino acid appearances in linker segments and non-

linker segments are computed. Then, the amino acid composition 

of the test protein sequence is computed, and finally the amino 

acid compositional index is calculated. 

In the second step, a simulated annealing algorithm is applied to 

find the optimal set of threshold values that will separate linker 

segments from non-linker segments. In the following sections, we 

describe both steps. An overview of the proposed method is 

illustrated in Figure 1.  

2.1 Compositional Index 
A protein is a polypeptide which is a linear polymer of several 

amino acids connected by peptide bonds. The primary structure of 

a protein is the linear sequence of its amino acid units. There are 

twenty amino acids that make up polypeptides and proteins. These 

amino acids are represented using one-letter abbreviation as A, R, 

N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V. 

Following Zaki et al. [18], we denote by S* the enumerated set of 

protein sequences in the database. From each protein sequence si 
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in S*, we extract known linker segments and non-linker segments 

and store them in datasets S1 and S2, respectively. To represent the 

preference for amino acid residues in linker segments, the 

compositional index r is calculated. The compositional index ri 

for the amino acid i will be calculated as follows: 

         
  
      

  
      

                             

 

Where    
       and   

       are the frequency of amino acid 

residue i in S1 and S2, respectively. This is somewhat analogous to 

DomCut method [13]. However, the information contained in the 

index values proposed by [13] has no sufficient information to 

accurately predict the linker segments, thus we follow the 

improved index proposed by Zaki et al. [18] in which amino acid 

compositional knowledge was incorporated. The typical AAC 

contains 20 components, each of which reflects the normalized 

occurrence frequency for one of the 20 natural amino acids in a 

sequence. The AAC in this case is denoted by ai. Each residue in 

every testing protein sequence is represented by its corresponding 

compositional index ri. Subsequently, the index values are 

averaged over a window that slides along the length of each 

protein sequence. To calculate the average compositional index 

values   
  along a protein sequence s, using a sliding window of 

size w, we apply the following formula: 

 

  
  

 
 
 
 
 
 

 
 
 
 
     

           
   

           
                                           

 

 
    
           
             

 
                              

 
    
 
   

               
                        

            

 

 
 

Figure 1: Overview of our approach. 

where L is the length of the protein and sj is the amino acid at 

position j in protein sequence s. 

2.2 Detecting the Optimal Set of Threshold 

Values Using Simulated Annealing 
Simulated Annealing is a probabilistic searching method for the 

global optimization of a given function in a large search space. It 

is inspired by the annealing technique which is the heating and 

controlled cooling of a metal to increase the size of its crystals and 

reduce their defects. The major advantage of SA over other 

optimization techniques is its ability to avoid being trapped in 

local optima. This is because the algorithm applies a random 

search which does not only accept changes that increase the 

objective function f (assuming a maximization problem), but also 

some changes that reduce it [3, 8]. 

In this case, the values mj are used in conjunction with SA 

Algorithm to improve the prediction by detecting linkers and 

structural domains. This is done by first dividing each protein 

sequence into segments. The segment size was set to the standard 

linker size among the dataset. Then, starting from a random 

threshold value for each segment, SA is applied to predict the 

optimal threshold for each segment that maximizes both the recall 

and precision of the linker segment prediction. Recall  
  

     
  is 

defined as the ratio of correctly predicted linkers to all of the 

structure-derived linkers listed in the dataset where TP is the 

number of amino acids within the known linker segment predicted 

as ‘Linkers’ and FN is the number of amino acid within the 

known linker segments predicted as ‘Domains’. Precision  
  

     
  

is defined as the ratio of correctly predicted linkers to all of the 

predicted linkers where FP is the number of amino acid out of the 

known linker segment predicted as ‘Linkers’. 

Recall and precision were selected to be our measures to evaluate 

the performance of the proposed method due to several reasons. 

First, both evaluation measures were used to evaluate the 

performance of most of the current approaches which will allow 

comparing the accuracy of our method to the state-of-the-art 

methods. Secondly, recall and precision can handle unbalanced 

data situation where data points are not equally distributed among 

classes.  

 

 

Figure 2: Linker preference profile.  

 

1605

http://en.wikipedia.org/wiki/Global_optimization
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Search_space


ALGORITHM: Simulated Annealing for Linker Prediction 

Optimization  

Set Initial state s0: 

Divide the protein sequence into segments of size 

segmentSize 

   Assign 0 as the initial threshold of each segment 

Calculate the AA compositional index of the input protein 

sequence  

Classify each AA as linker (1) or domain (0) according to its 

compositional index value with respect to the corresponding 

segment threshold.  

Calculate the objective functions f1(s0)= recall and f2(s0)= 

precision 

Maximize recall and precision: 

   Select initial temperature T0 = 0.1 

   Select temperature reduction function α = 0.9 

   For n = 1 to Number of Segments 

       Repeat 

          Make a transition Tr: 

              randomly increase or decrease the threshold of seg 

              s = Tr(s0) 

          Classify each AA as linker or domain 

          Calculate f1(s) and f2(s) 

          δf1 = f1(s) - f1(s0), and δf2 = f2(s) – f2(s0) 

          If δf1 > 0 and δf2 > 0 

             then s0 = s 

          else 

             generate a random number r ϵ R(0,1) 

               if r <              

                 then s0 = s 

       Until iteration_count = 20 

       Set T = α * T 

    End 

Return s0 as the optimal threshold values for the protein 

sequence segments 

Return f1(s0)and f2(s0) as the final recall and precision, 

respectively 

 

Algorithm 1: Detecting the optimal set of threshold values using 

Simulated Annealing. 

 

 

In this case SA will accept a transition that leads to one of the 

three following conditions: an increase in both recall and 

precision, an increase in recall if precision is not changed, or an 

increase in precision if recall is not changed. SA is summarized in 

Algorithm 1. 

3. EXPERIMENTAL RESULTS AND 

ANALYSIS 
The performance of our proposed method was evaluated on two 

protein sequence datasets. The first dataset was used by Suyama 

and Ohara [13] to evaluate the performance of DomCut which 

was extracted from the Swiss-Prot data base [1]. The dataset 

contains non-redundant set of 273 protein sequences (486 linker 

and 794 domain segments). The average numbers of amino acid 

residues in linker and domain segments were 35.8 and 122.1, 

respectively. The second dataset is DS-All [6, 15] which was used 

to evaluate the performance of DROP [5] in predicting inter-

domain linker segments. 

Applying our method to DomCut/Swiss-Prot protein sequence 

dataset leads to an average recall of 0.452 and precision of 0.761 

with the segment size of 36 AA (average linker size in the 

dataset). With 18 AA segment size (half of the average linker 

size), we achieved a recall of 0.558 and precision of 0.836. It is 

worth to mention that the recall and precision of DomCut were 

respectively 0.535 and 0.501, which was achieved at the threshold 

value of −0.09. 

When we evaluated the performance of the proposed method on 

151 protein sequences of DS-All dataset (182 linker and 332 

domain segments), setting the segment size to 13 AA (average 

linker size in DS-All dataset), we achieved an average prediction 

recall of 0.592, and precision of 0.595. The comparison of the 

performance of our approach against the currently available 

domain linker prediction approaches [5] are reported in Table 1. It 

is clear to see that the proposed method outperformed the state-of-

the-art domain-linker prediction approaches in both recall and 

precision. 

To demonstrate the performance of the proposed method, in 

Figure 3, we show the optimal threshold values for an example 

(protein-256) in DomCut dataset as predicted by our method 

while in Figure 4, we show the optimal threshold values for 

another example (protein-151) in DS-All dataset. It is clearly 

shown that the compositional index threshold values at linker 

segments are increased by the algorithm while threshold values of 

domains are reduced. 

 

Table 1: Prediction performance of publicly domain linker 

prediction approaches. 

Approach Recall Precision 

Proposed method 0.592 0.595 

DROP 0.413 0.494 

DROP-SD5.0 0.428 0.515 

DROP-SD8.0 0.418 0.503 

SVM-PeP 0.403 0.491 

SVM-SD3.0 0.373 0.446 

SVM-SD2.0 0.353 0.420 

SVM-Af 0.214 0.257 

Random 0.050 0.060 

 

1606



 

Figure 3: Optimal threshold values for protein-256 in DomCut 

dataset. 

 

Figure 4: Optimal threshold values for protein-151 in DS-All 

dataset. 

 

4. CONCLUSION AND FUTURE WORK 
In this work, we examined the amino acid compositional index to 

predict protein inter-domain linker segments from amino acid 

sequence information. Then, we employed simulated annealing to 

improve the prediction by finding the optimal set of threshold 

values that separate domains from linker segments. The 

performance of the proposed method was compared to the state-

of-the-art approaches on two well-known protein sequence 

datasets. Experimental results show that the proposed method 

outperformed the currently available approaches for inter-domain 

linker prediction in terms of recall and precision. We achieved a 

recall of 0.592 and a precision of 0.595. 

This work can be extended by examining different sliding window 

sizes in computing the AA composition. It is expected that the 

combination of different window sizes will provide more 

flexibility in accounting for the length variation of linker 

segments, reduce the bias towards a fixed linker segment length, 

and produce a series of features for each protein sequence. 

Although simulated annealing has significantly improved the 

prediction, additional tuning and other strategy choices could 

accomplish more effective and flexible prediction. One of these 

tuning strategies is to use dynamic segment sizes which can, in 

turn, leads to a better optimization process. The proposed method 

has a potential to perform well if it is applied in all human protein 

sequences where novel inter-domain linkers could be identified. 
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