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ABSTRACT
Nuclear Magnetic Resonance (NMR) Spectroscopy is an im-
portant technique that allows determining protein structure
in solution. An important problem in protein structure
determination using NMR spectroscopy is the mapping of
peaks to corresponding amino acids. Structure Based As-
signment (SBA) is an approach to solve this problem using
a template structure that is homologous to the target. Our
previously developed approach NVR-BIP computed the op-
timal solution for small proteins, but was unable to solve the
assignments of large proteins. NVR-TS extended the appli-
cability of the NVR approach for such proteins, however the
accuracies varied significantly from run to run.

In this paper, we propose NVR-ACO, an Ant Colony Op-
timization (ACO) based approach to this problem. NVR-
ACO is similar to other ACO algorithms in a way that it
also consists of three phases: the construction phase, an
optional local search phase and a pheromone update phase.
But it has some important differences from other ACO algo-
rithms in terms of solution construction and pheromone up-
date functions and convergence rules. We studied the data
set used in NVR-BIP and NVR-TS. Our new method finds
optimal solutions for small proteins and achieves perfect as-
signment on EIN and higher accuracy on MBP compared to
NVR-TS. It is also more robust.

*Abbreviations used: NMR, Nuclear Magnetic Resonance;
NOE, Nuclear Overhauser Effect; RDC, Residual Dipolar
Coupling; SBA, Structure-Based Assignments; NVR, Nu-
clear Vector Replacement; BIP, Binary Integer Program-
ming; TS, Tabu Search; ACO, Ant Colony Optimization
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1. INTRODUCTION
To understand the function of a protein it is often nec-

essary to determine its 3D structure. There are two main
techniques for determining the structure of a protein: X-Ray
Crystallography and Nuclear Magnetic Resonance (NMR)
spectroscopy. X-ray Crystallography is a method of deter-
mining the arrangement of atoms within a crystal. NMR is
an experimental technique that exploits the magnetic prop-
erties of certain atomic nuclei to obtain information about
the geometry of the atoms and the bonds between them.
These structures are then deposited into the Protein Data
Bank [6] where they are available for download. In contrast
to X-ray Crystallography, NMR spectroscopy is usually lim-
ited to proteins smaller than 35 kDa, although larger struc-
tures have been solved. NMR spectroscopy is often the only
way to obtain high resolution information on partially or
wholly intrinsically unstructured proteins. Not all proteins
can be crystallized and studied by X-ray Crystallography.
Moreover, NMR allows one to solve protein structure in so-
lution.

The key challenge in NMR spectroscopy is mapping NMR
peaks to the atoms. Testing all combinations is intractable
and this problem is still solved manually in many NMR lab-
oratories, which may take months to complete. Another
complicating factor in solving the assignments is the noise
in the data. Due to noise, the peaks may overlap and in
addition there may be extra or missing peaks, which com-
plicates the automated solution of the assignments.

Structure Based Assignment (SBA) is a method to solve
this problem by using a template structure that is homol-
ogous to the target protein. This template provides prior
structural information about the target protein and leads
to faster resonance assignments. Most of the novel proteins
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have structural homologues in Protein Data Bank which en-
able the application of SBA in determining their structure.
SBA has applications in drug design, function prediction and
SAR [9].

Previous SBA studies include combinatorial assignment
program (CAP) ([1], [15]) which is an RNA assignment al-
gorithm and which performs an exhaustive search over all
permutations with an exponential time complexity. Inte-
ger Linear Programming-based Assignment (IPASS) [2] is
an integer linear programming-based assignment method on
perfect as well as noisy peak lists. These approaches as well
as MARS [17] require triple resonance experiments. In con-
trast, Nuclear Vector Replacement (NVR) [21] does not re-
quire triple resonance experiments and instead relies on data
that requires less spectrometer time and is therefore less ex-
pensive to acquire. NVR is a molecular replacement-like ap-
proach for SBA of resonances and sparse Nuclear Overhauser
Effects (NOEs). NVR-BIP [4] is a binary integer program-
ming formulation of SBA in NVR framework. It computes
the exact solution of an optimization problem subject to
NOE constraints and obtains high assignment accuracies on
small proteins. NVR-TS [5] is a tabu search approach to
solve the optimization problem introduced by [4] which has
a guided diversification mechanism. NVR-TS also relaxes
NOE constraints by using a penalty term. By doing so, it
enables searching through infeasible neighbourhoods violat-
ing the NOE constraints to reach better solutions. NVR-TS
also solved the assignments for large proteins.

In this work we develop an ant colony optimization (ACO)
approach to solve the assignment problem introduced in [4].
ACO is a metaheuristic approach developed for solving hard
combinatorial optimization problems using the foraging be-
haviour of ants. Ant system (AS) is the first ACO approach
which was applied for solving the travelling salesman prob-
lem ([12]). Some early applications include the elitist strat-
egy for ant system (EAS) proposed by [12], rank-based ver-
sion of ant system (ASrank) by [7], MAX-MIN ant system
(MMAS) by [27], and ant colony system (ACS) by [11]. ACO
algorithms have also been applied to bioinformatics prob-
lems such as protein folding ([23], [24], [25]) and flexible
ligand-protein docking [18]. More details on ACO and an
extensive review of its applications to various combinatorial
optimization problems may be found in [13]. The contribu-
tions of this paper are as follows:

• We eliminate the manual step in NVR-BIP and NVR-
TS of updating the alignment tensor for the Resid-
ual Dipolar Couplings (RDCs) based on previously ob-
tained assignments, thus automating the computation.

• We implement an ACO based algorithm to solve the
NMR SBA problem under the NVR framework. To
the best of our knowledge this is the first application
of ACO to this problem.

• We apply our approach to NVR-TS dataset. Our re-
sults demonstrate higher assignment accuracies and
more robust results with less computational time.

The remainder of this paper is structured as follows. In
Section 2, we give a brief description of NVR-Framework
and give definition of the problem. Our algorithm for the
NMR SBA problem is described in Section 3. The results
and comparison of the algorithm with other approaches is

presented in Section 4. In Section 5 we draw conclusion and
note some directions for future research.

2. NVR-FRAMEWORK
NVR is a molecular replacement-like approach for SBA of

resonances and sparse NOEs. NVR-Expectation-Maximizati-
on (NVR-EM) [19] is a polynomial time algorithm that uses
maximum bipartite matching in an expectation maximiza-
tion framework to assign a protein using information from
a structural homologue. One set of nodes in NVR-EM’s
bipartite graph corresponds to the peaks and the other cor-
responds to the residues. The edges are associated with
a weight which corresponds to the probability of assigning
that edge. These probabilities form the basis of NVR’s scor-
ing function and are computed by using the difference in
the backcomputed and observed NMR data, such as RDCs.
NVR-EM performs the assignments in two stages: In the
first phase, the assignments are performed using only chem-
ical shifts. After five unambiguous assignments are made,
the alignment tensor is computed and the RDCs are also
added to the computation. The alignment tensor is up-
dated as more assignments are made. NVR-EM has been
successfully demonstrated on 3 target proteins with 21 pro-
tein templates.

NVR uses only 15N labeled data. NVR does not require
triple resonance experiments unlike most other assignment
programs, but relies on a few cheap key spectra. These data
include chemical shifts which allow to identify individual
atoms, Nuclear Overhauser Effect (NOE) data which allows
to determine the pair of protons close in space, and Residual
Dipolar Couplings (RDCs) which provide global information
on the orientation of internuclear vectors. NVR framework
has been extended to also accept 15N TOCSY and amide ex-
change HSQC by [20]. These data types provide side chain
proton chemical shifts and solvent accessibility information
of the labile protons, respectively, and allow the determina-
tion of the amino acid type as well as whether the proton
is exposed to the solvent or not, respectively. This resulted
in improved assignment accuracies for distant templates of
target proteins [3].

NMR SBA problem consists of finding the correspondence
between the peaks in the NMR spectrum and the amino
acids with the help of a template protein. In the NVR
framework, this problem is reduced to minimizing a scoring
function that reflects the likelihood of assigning individual
peaks to amino acids subject to distance (NOE) constraints.
More formally the problem can be formulated as follows [4]:

Notation:
P — set of peaks
A — set of amino acids
sij — combined score of assigning peak i to amino acid j
NOEi — set of peaks that have an NOE constraint with
peak i
NTH — distance threshold for NOE interaction
bij ∈ {0, 1} — equals 1 if the distance between amino acids
j and l exceeds a distance threshold (NTH); 0 otherwise

Z = min
X
i∈P

X
j∈A

sijxij (1)
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X
i∈P

xij = 1, ∀j ∈ A (2)

X
j∈A

xij = 1, ∀i ∈ P (3)

xij + xkl ≤ bjl ∀j, l ∈ A, ∀i, k ∈ P, ∀k ∈ NOEi (4)

xij ∈ {0, 1}, ∀i ∈ P, ∀j ∈ A (5)

The objective function (1) minimizes the total score as-
sociated with assigning NMR peaks to amino acids. Con-
straints (2) ensure that each amino acid is matched with
exactly one peak and constraints (3) make sure that each
peak is assigned to exactly one amino acid. The NOE con-
straints (4) make sure that the distance between the protons
corresponding to the NOE is expected to be less than the
predetermined threshold. Constraints (5) define the binary
variables such that xij is equal to 1 if peak i is assigned to
amino acid j and 0 otherwise.

Finding the set of assignments with the minimum total
assignment score within the NVR framework is proven to
be NP-hard by using a reduction from the Three Coloring
Problem [5].

3. ALGORITHM
Our approach consists of applying ant colony optimization

to the SBA problem and the automatic alignment tensor
computation. ACO consists of solution construction, local
search and pheromone update. These are described in Sec-
tions 3.1 and 3.2.

3.1 Ant Colony Optimization Based Approach
(NVR-ACO)

ACO is based on the observation of the behaviour of real
ant colonies searching for food sources. Real ants deposit
an aromatic essence, called pheromone, on the path they
walk. Other ants searching for food can sense the existence
of pheromone and choose their way according to the level
of pheromone. Greater level of pheromone on a path will
increase the probability of the ants following that path. The
level of pheromone laid on a path is based on the length of
the path and the quality of the food source and increases
when the number of ants following that path increases. In
time all ants are expected to follow the shortest path [14].

ACO simulates the above described behaviour of real ants
to solve combinatorial optimization problems with artificial
ants. Artificial ants find solutions on a graph in parallel
processes using a constructive mechanism guided by artifi-
cial pheromone trails and a greedy heuristic known as vis-
ibility [10]. Pheromone trail intensity τij between nodes
i and j represents the collective memory of ants and its
amount is proportional to the quality of the solution gener-
ated. The visibility ηij is the heuristic information showing
the desirability of moving from node i to node j and can be
implemented in different ways depending on the particular
problem. In addition, the artificial ants may benefit from a
local search heuristic in an attempt to improve the solution
quality.

Similar to other ACO algorithms, NVR-ACO consists of
three phases: a construction phase during which the ants
build the solutions, a local search phase where the solutions
are further improved, and a pheromone update phase where

the pheromone trails are updated based on the quality of
the solutions obtained after the construction and the local
search phases. The algorithm is summarized in Figure 1.

initialize pheromone trails
while (stopping condition not satisfied) do

for all ant do
for i = 1→ |P | do

select a peak (using constrained peak selection)
assign amino acid (using random selection rule)

end for
end for
elitist (2-opt) local search
elitist pheromone update

end while

Figure 1: Outline of NVR-ACO

3.1.1 Solution Construction
In our approach we assign a pheromone value τij to every

peak-amino acid matching and we associate each ant with
a peak. So, the number of ants is equal to the number of
peaks. Initially, ant i is placed on peak i. From this po-
sition each ant begins constructing its solution by selecting
at each step an amino acid using the random selection rule.
During this construction process, we allow both the assign-
ments which violate NOE constraints and the assignment
of peak-amino acid pairs where a large difference exists be-
tween the predicted and experimental data values such as
chemical shifts. This is in contrast to NVR-BIP where such
assignments were considered as “infeasible”. However, due
to noise in the experimental data such assignments need to
be tolerated in order to obtain a robust solution for the
SBA problem. In order to minimize the violation of NOE
constraints and the number of “infeasible” assignments we
penalize such assignments. The total score associated with
the solution obtained by ant k is calculated as follows:

Zk =
X
i∈P1

X
j∈A

sijxij +
X
i∈P2

p, (6)

Here P is the set of peaks, P2 is the set of penalized peaks
(corresponding to NOE violations or“infeasible”assignments),
and P1 = P \ P2. sij is the score associated with assigning
peak i to amino acid j and p is the penalty term which is
calculated as follows:

p = max(sij) ∗ pc (7)

where pc > 0 is a constant used for controlling the impact of
the penalty term. Note that each NOE violation is penalized
in NVR-TS whereas NVR-ACO includes a penalty per peak.
Our aim in doing so is to prevent overpenalizing an incorrect
peak assignment with many NOE violations.

As opposed to most ACO algorithms, our heuristic infor-
mation consists of two components. Since our objective is to
minimize the total score of assigning peaks to amino acids
our first heuristic information is ηij = 1/sij . The second
heuristic function is as follows:

δij =

8><>:
1 if an assignment does not violate

any NOE conditions
1

c∗p
otherwise

(8)
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Figure 2: A graphic view of assignment process. Yel-
low lines between peaks represent NOE relations,
blue lines between amino acids represent distance
relations.

c is the number of NOE violations caused by assigning peak
i to amino acid j. The motivation of this heuristic function
is to lower the probability of an assignment which violates
more NOE conditions. The random selection rule is as fol-
lows:

pk
ij =

8<:
τα

ijη
β
ijδ

γ
ijP

l∈Nk
i

τα
il

η
β
il

δ
γ
il

if j ∈ Nk
i

0 otherwise

, (9)

where Nk
i is the set of unassigned amino acids for the kth

ant and α, β, and γ are the parameters used to control the
influence of pheromone trails and the heuristic information.

After matching an amino acid with the incumbent peak
the ant selects the next peak to assign to an amino acid. The
peak selection procedure is as follows: Peaks are attributed
with a number showing how many amino acids it can be
matched with and whether this assignment will violate NOE
conditions or not. Then, the peaks are sorted in the non-
decreasing order of this value and a peak is randomly se-
lected among the top θ1 percent of all peaks. We refer to this
pseudo-random selection procedure as “constrained peak se-
lection”. We also tested random (θ1 = 100) and sequential
peak selection procedures (select the next peak from the
peak array) but their performance were inferior.

3.1.2 Local Search
Before we update the pheromone trails we use a 2-opt

local search procedure to further improve the assignments
obtained by the ants. We adopt an elitist approach where
the solutions obtained by the best-performing θ2 percent of
ants are involved in the local search using an exhaustive best-
improvement strategy. Basically, we swap the assignments
leading to the greatest decrease in the total score value and
repeat this procedure until no further decrease is possible.

3.1.3 Pheromone Update
At the beginning pheromone trails are initialized as fol-

lows:

τ0 = 1/[(1− ρ) ∗ Z0] (10)

where Z0 is an initial score value. In our implementation
we estimated Z0 by multiplying the mean value of the score
matrix with the number of peaks.

The pheromone evaporation is performed as usual by re-
ducing the phero-mone trails by the evaporation factor ρ.
For the pheromone reinforcement we use an elitist strategy
based on relative weights inspired from [25]. In this ap-
proach we sort the ants according to the quality of solutions
they have achieved. The pheromone values are updated ac-
cording to the following formula:

τij ← (1− ρ)τij +

lX
r=1

ωr∆τr
ij , ∀(i, j) (11)

where (0 < ρ < 1) is the evaporation rate, l is the num-
ber of elite ants, and ωr is the weight associated with ant
r. We set l = |P |∗ θ3 /100 where θ3 is a parameter to de-
termine the number of elite ants and ωr = Zl/Zr. Zl and
Zr are the scores of the constructed solution for lth and rth

ant, respectively. Since we have a minimization objective
function the weight of the best solution found so far is the
highest within this scheme. The use of relative weight with
respect to the best-score prevents over-emphasizing the so-
lutions of the best-performing ants. It also enables better
convergence of pheromone trails. ∆τr

ij indicates the amount
of pheromone deposited by ant r and is calculated as follows:

∆τr
ij =

8><>:
1/Zr, if amino acid j is assigned

to peak i by ant r

0, otherwise

(12)

When the system stagnates we re-initialize the pheromone
trails by setting Z0 in equation (10) equal to the best-so-far
score. The system is considered in stagnation if the ratio
of standard deviation to the mean of the whole pheromone
matrix is smaller than ε for I1 consecutive iterations and the
best-so-far score has not improved in the past I2 consecutive
iterations. Once a feasible assignment has been obtained if
the algorithm is unable to improve it after I3 consecutive
stagnations we terminate.

3.2 Automating the assignment computation
In our previous approach (NVR-BIP and NVR-TS) we

performed the assignments in two stages: first we computed
the assignments without RDCs, then based on these assign-
ments we computed the Saupe alignment tensor and added
RDCs to the score matrix computation. We then computed
the assignments with the new scoring matrix. The compu-
tation involved iterating between assignment computation
and generating the new scoring matrix until convergence of
the assignments and each step required running a separate
program manually with the right set of input files.

In this paper we automate this process by incorporating
the RDCs at the outset of the assignments and closing the
loop between the alignment tensor computation and the as-
signment computation, iterating until convergence. In par-
ticular, we use grid search as in [21] to compute the align-
ment tensor without requiring a priori assignments, and then
at each successive step we update the alignment tensor as
before using singular value decomposition (SVD).
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Table 1: Experimental design for parameter selection (bold values are selected)

Parameters Tested Values

α - pheromone intensity parameter 1, 2, 3, 4
β - visibility parameter 0, 1, 2, 3
γ - visibility parameter 1, 2, 3
θ1 - % of peaks used in constrained peak selection 5, 10, 15
θ2 - % of ants used in local search 2, 5, 10, 15, 20, 30
θ3 - % of ants used in pheromone update 1, 2, 5, 10, 15
ρ - evaporation constant 0.01, 0.02, 0.05, 0.10, 0.15, 0.20

ε - constant for stagnation 0.0001

Table 2: Accuracy results for large proteins. Columns 3-6 are in percentages.

No. of NVR-TS NVR-ACO
PDB ID residues Best Sol. Avg. Acc. Best Sol. Avg. Acc.

EIN 243 83 59 100 96
MBP 348 91 89 91 90

4. RESULTS
We tested NVR-ACO on an Intel R© Xeon R© CPU E7430

machine with 8 2.13GHz processors each with 128GB total
memory. We studied the data set used in NVR-BIP and
NVR-TS. Detailed data preparation for the tested proteins
is as described in [4], [5] and [19]. After some preliminary
tests, we determined the values of I1 , I2 , and I3 as 5, 20 and
5, respectively, and pc is set to 10. To tune the remaining
parameters we performed a preliminary experimental study
using the values summarized in Table 1. The numbers in
bold show the values we selected to use in our detailed ex-
periments.

We performed ten runs for each protein. The results are
reported in Tables 2 and 3. Accuracy is the ratio of correctly
assigned peaks to the total number of peaks. “Best Sol.”
column refers to the accuracy of the best solution (i.e. the
solution with the lowest score), achieved in ten runs and
“Avg. Acc.” column shows the average accuracy of the ten
solutions.

Table 2 summarizes the results on the following large pro-
teins: MBP (348 residues) and EIN (243 residues). While we
were unable to solve these proteins to optimality due to their
sizes in NVR-BIP, NVR-TS was able to find a solution with
an accuracy of 91% for MBP and 83% for EIN. The average
accuracies were 89% and 59%, respectively. NVR-ACO has
a similar performance for MBP: the best solution has an ac-
curacy of 91% while the average accuracy is 90%. On the
other hand, it has a remarkable performance for EIN with
100% accuracy in the best solution and an average accuracy
of 96%. These results show both the superiority and the
robustness of NVR-ACO on these two large proteins. Note
that even though the hardware used to obtain the results
for NVR-TS and NVR-ACO are different, the experimental
conditions are the same, enabling us to compare the accu-
racies.

Similar to NVR-TS and NVR-BIP, NVR-ACO also finds
the optimal solutions for smaller proteins. The assignment
accuracies are slightly higher for 1AZF and 1BGI and slighly
lower for 3LYZ compared to NVR-TS. These are probably
due to the small difference in the initial alignment tensor
estimation method. More significantly, NVR-ACO is more

robust compared to NVR-TS and it is able to find the opti-
mal solution in most tests.

With NVR-ACO, it takes a few minutes to obtain the
assignments for pol η, GB1, SPG, ff2, ubiquitin and about
10-13 minutes for hSRI and lysozyme respectively. For the
larger proteins, it takes 8.5 hours for EIN and 20 hours for
MBP to obtain the final assignments. In contrast, NVR-
BIP running time varied between a few seconds to about
30 minutes on its test set and NVR-TS returned a solution
in shorter amount of time than NVR-BIP on NVR-BIP’s
dataset. It took NVR-TS an average of 37 hours to solve the
assignments for MBP and 19.8 hours for EIN on an Intel R©
Core i7 CPU 960 3.20 Ghz processor with 24GB of RAM.

Finally, it is not practical to compare the assignment ac-
curacy of NVR-ACO with that of other approaches such as
that of [26] since the combination of NMR data used in these
approaches (and sometimes the accuracy measures) are dif-
ferent. Nevertheless, on EIN, [26] has an assignment accu-
racy of 99.2% with a relaxed assignment definition which
accepts an assignment as correct if its assignment ensemble
contains the correct matching, whereas NVR-ACO achieves
100% with a more strict accuracy definition which counts
an assignment as correct only if a peak is assigned to the
correct residue.

5. CONCLUSION AND FUTURE WORK
In this paper we developed NVR-ACO, an ant algorithm

for solving the NMR protein structure-based assignment prob-
lem. To the best of our knowledge, this is the first applica-
tion of ACO to the NMR-SBA problem and it includes the
following new mechanisms: a heuristic for peak selection,
two visibility functions, and a relative weight approach for
pheromone reinforcement. We tested NVR-ACO on NVR-
BIP and NVR-TS’s dataset. We found the optimal solutions
on NVR-BIP’s dataset and were able to solve the assign-
ments for the large proteins with a higher accuracy than
NVR-TS. We have also automated our computational pro-
cedure.

As future work we plan to develop a better score function
(for example by using Bayesian statistics), extracting more
information from data. Future work also includes automat-
ing peak picking and chemical shift referencing as well as
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Table 3: Accuracy results for small proteins. The numbers in columns 4-8 are in percentages.

Protein No. of NVR-TS NVR-ACO

Family residues PDB ID NVR-BIP
Best Sol. Avg. Acc. Best Sol. Avg. Acc.

1UBI 97 97 97 97 97
1UBQ 97 97 97 97 97

Ubiquitin 72 1G6J 97 97 97 97 97
1UD7 97 97 97 97 97
1AAR 97 97 97 97 97
1GB1 100 100 100 100 100

SPG 55 2GB1 100 100 100 100 100
1PGB 100 100 100 100 100
193L 100 100 100 100 100
1AKI 98 98 98 98 98
1AZF 94 94 94 95 95
1BGI 97 97 97 98 98
1H87 100 100 100 100 100
1LSC 100 100 100 100 100

Lysozyme 126 1LSE 98 98 98 98 98
1LYZ 82a 82a, 69b 82a, 69b 82a, 79b 82a, 79b

2LYZ 91 91 92 91 91
3LYZ 90 90 89 88 88
4LYZ 91 91 91 91 91
5LYZ 91 91 89 91 91
6LYZ 96 96 96 96 96

80 ff2 93 93 93 93 93
96 hSRI 89 89 89 89 89

The Rest
31 pol η 100 100 100 100 100

55 GB1 100 100 100 100 100

Note: a: With one set of RDCs, b: With two set of RDCs.

performing the assignments without TOCSY data and with
ambiguous NOEs.
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[13] M. Dorigo and T. Stützle. Ant colony optimization. A
Bradford Book. The MIT Press, 2004.

[14] S. Goss, R. Beckers, J.L. Deneubourg, S. Aron, and
J.M. Pasteels. How trail laying and trail following can
solve foraging problems for ant colonies. In:
Behavioral Mechanisms of Food Selection, Ed. R.N.
Hughes. NATO-ASI Series, vol. G 20, Springer-Verlag:
Berlin, 1990. 661-678.

[15] J. Hus, J. Prompers, and R. Brushweiler. Assignment
strategy for proteins with known structure. Journal of
Magnetic Resonance, 157:119–123, 2002.

[16] R. Jang, X. Gao, and M. Li. Integer programming
model for automated structure-based NMR
assignment. Technical Report CS-2009-32, University
of Waterloo, 2009.

[17] Y. Jung and M. Zweckstetter. Mars: robust automatic
backbone assignment of proteins. J. Biomol. NMR,
30:11–23, 2004.
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