
Push-forth: a Light-weight, Strongly-typed, Stack-based
Genetic Programming Language

Maarten Keijzer
Pegasystems Inc.

Claude Debussylaan 20b
Amsterdam, The Netherlands

mkeijzer@xs4all.nl

ABSTRACT
This paper defines the push-forth language, a recombina-
tion of Push [3] and Joy [7], borrowing type-safety consid-
erations from Alp [2]. Push-forth is stack-based, strongly
typed and easy to extend. The concept of an Evolutionary
Development Environment is presented, and some informal
experiments are described to illustrate the utility of such an
environment.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Specialized applica-
tion languages

Keywords
Genetic programming, Functional programming, Joy, Push,
Evolutionary development environment

1. THE PUSH-FORTH ENGINE
Push-forth is a recombination of concatenative combina-

tor languages like Joy [7], Cat [1], and genetic programming
languages like Push 1,2 & 3 [3, 5, 6, 4]. Push-forth is de-
signed to be simple to define, easy to implement, strongly
typed, and extensible. The language is stack based, and in-
structions manipulate items on the stack. It has the concept
of a program – in itself a ’stack’ of instructions – that oper-
ates on a stack of data elements. Because program and stack
work intimately together, it was chosen to use an implemen-
tation where the program would, by convention, be the first
element on the data stack. Execution of a program would
pop the program of the data stack, execute an instruction
from that program using the rest of the data stack, and push
the program back on the data stack.

The language thus uses a single stack. It uses predicates
to ensure type-safety, and by virtue of this type-safety it
can handle constrained languages such as matrix algebra,
simply by coding the constraints in the definition of the in-
structions. In this respect it resembles a language such as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for prof t or commercial advantage and that copies
bear this notice and the full citation on the f rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specif c
permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

ALP [2]. It is not surprising that a push-forth interpreter
can be implemented in a few lines of code in Prolog.

As an inital example, below a trace of the full execution
of the simple postfix program 1 1 + is shown:

[[1 1 +]]
[[1 +] 1]
[[+] 1 1]
[[] 2]

Execution thus halts when the first element of the list/stack
is the empty list. Because the pattern of a list containing a
list as the first element is ubiquitous in push-forth, a special
notation is used bring code and data notationally closer to-
gether. It does this by introducing the pivot element ’ · ’,
and reversing the order of the program, effectively showing
it in prefix notation. So if c defines an instruction, and d a
data element, the following convention is used:

[[c1 . . . cn] d1 . . .dm] ≡ [cn . . . c1 · d1 . . .dm]

And thus

[[] d1 . . .dm] ≡ [· d1 . . .dm]

In this altered notation, the previous computation now
reads differently.

[+ 1 1 ·]
[+ 1 · 1]
[+ · 1 1]
[· 2]

This is just notational convenience, the underlying imple-
mentation works with postfix programs pushed on the data
stack. This notation is chosen as it makes some of the def-
initions easier to follow. In a few cases this does not hold.
For these the original notation is used. Below, upper case
characters such as X , Y , and Z are typically used to de-
note lists, while lower case characters x , y , and z denote
any data type (including lists).

Using this notation, we can define an instruction f as an
operation that takes some elements from the stack Y (to
the left of the pivot element), and returns a continuation,
[C · D] , where C is the code to run, and D contains the
remainder of the original data stack, optionally with some
results added to the stack.

1635

f(Y) = [C·D]

One such instruction is eval . Eval takes a list, and
proceeds in four different cases:

eval([x X]) = [· x X] x not list
eval([· X]) = [· X] halt
eval([X f · Y]) = [X C · D] f(Y) = [C · D]
eval([X x · Y]) = [X · x Y] otherwise

eval thus takes a list, and either creates a halted program
out of that list, executes an instruction, or moves data from
the code stack to the data stack. It is itself an instruction.
As a departure from Push 1,2, and 3 that execute a list
recursively, in push-forth, a list is considered to be a data
element, and gets pushed on the data stack.

In essence, the eval instruction defines the push-forth
engine. At its core, this engine consists of an implementation
of a list/stack, a type definition of an instruction, the eval
instruction that is aware of the type of instructions, and
a set of other instructions and data elements. The set of
instructions is defined to do something useful, and can vary
from generic to very specific. Below a subset of instructions
are described that define a number of important patterns to
deal with:

• Too few arguments on the stack

• Wrongly typed arguments on the stack

• Recursion

1.1 Too few arguments on the stack
Stack manipulating functions such as dup , swap and

rot can operate on any stack element. All they need is the
presence of 1,2, or 3 arguments on the stack respectively.
In push-forth, too few elements on the stack lead to the
instruction to be skipped (no-op).

dup([]) = [·]
dup([x X]) = [· x x X]

swap([]) = [·]
swap([x]) = [· x]
swap([x y X]) = [· y x X]

1.2 Wrongly typed arguments on the stack
Type-safety is enforced by the instructions. Typically, an

instruction checks the types on the stack, and returns a con-
tinuation when the types do not match. This continuation
puts the data-element that was incorrectly typed onto the
code stack, and recursively calls itself. Assuming n and
m designate integers, integer addition is fully defined using
the following 5 cases.

add([]) = [.] missing args
add([x]) = [. x] missing args
add([x X]) = [x add · X] x not int
add([m y X]) = [y add · m X] y not int
add([m n X]) = [. m+n X] execute

When non-integers are encountered, they are put on the
code stack, and will, after successful execution of the ad-
dition, be put back on the data stack. Example:

1 [add · ’b’ 1 ’a’ 2]
2 [’b’ add · 1 ’a’ 2]
3 [’b’ ’a’ add · 1 2]
4 [’b’ ’a’ · 3]
5 [’b’ · ’a’ 3]
6 [· ’b’ ’a’ 3]

Although in the example above a simple type check was
performed, in general, the language can use arbitrary pred-
icates to check type safety. For instance, an integer division
instruction could simply skip any zeros it will find as de-
nominator, and matrix operators could check row and col-
umn dimensions, skipping over instructions that cannot be
used in the computation. This gives greater flexibility in
the use of typed operators than for instance Push 1,2 & 3,
where a separate stack is maintained for each type. The
disadvantage is a possible lack of efficiency, where instruc-
tions are continuously searching for arguments on the stack.
However, by consistently using the number of instructions
processed as a means of gauging the speed of a program, and
by always having this speed as an objective in the search,
programs will need to find ways to work efficiently with the
available resources.

1.3 Recursion, Combinators and Turing Com-
pleteness

For simple recursion, the combinator i is defined.

i([]) = []
i([[c1 . . . cn] Y]) = [cn . . . c1 · Y]

Although the pivot notation obscures it, essentially, the i
combinator takes a list from the data stack, and appends it
to the code stack. i is a basic combinator, but many more
combinators on code can be defined. Turing completeness
can be established with any set of basis combinators ([7]). A
few are displayed here (omitting type safety conditions for
brevity):

cons([x [X] Y]) = [· [x X] Y]
pop([x X]) = [· X]
split([[x X]]) = [· x X]
car([[x X]]) = [· x] split swap pop
cdr([[x X]]) = [· X] split pop
cat([X Y Z]) = [· [[X Y] Z]
unit([x Z]) = [· [x] Z]

1.4 A push-forth interpreter written in push-
forth

Define the while combinator such that it halts when the
second argument is empty, and recursively executes the first
argument otherwise. In this section, the use of the C ·

D notation becomes confusing, therefore it uses the regular
style of nested brackets (postfix).

while([X [] Y) = [[] Y]
while([X Z Y) = [[X [X while] i] Y]

A push-forth interpreter can be written in push-forth as
[while [eval dup car] [[]]] :

1636

[[[]] [eval dup car] while] [[1 1 +]]
[[eval dup car] while] [[]] [[1 1 +]]
[while] [eval dup car] [[]] [[1 1 +]]
[eval dup car [[eval dup car] while] i] [[1 1 +]]
. . .

[while] [eval dup car] [1 +] [[1 +] 1]
. . .

[eval dup car [[eval dup car] while] i] [[+] 1 1]
[dup car [[eval dup car] while] i] [[] 2]
. . .

[while] [eval dup car] [] [[] 2]
[] [[] 2]

1.5 Overloading
By virtue of operating on a single stack, the language

comes with a natural way of overloading functions. When-
ever there are instructions that share the same symbol, say
+ that is defined for integers, floats, matrices, vectors, poly-
nomials, or symbolic expressions themselves, they can be
combined into a single combined instruction that will exe-
cute for the first set of matching arguments. As an example,
consider the case that the symbol ’+’ is used concatenation
of strings and addition of integers:

+ · ”Hello ” 2 ”World!” 3
2 + · ”Hello ” ”World!” 3
2 · ”Hello World!” 3
· 2 ”Hello World!” 3

2. GENETIC PROGRAMMING INANEVO-
LUTIONARYDEVELOPMENTENVIRON-
MENT

For representing code to a genetic programming system,
push-forth remains faithful to its FORTH ancestry. In push-
forth, a program is simply a string of elements. The elements
are either an instruction (which will get executed when en-
countered), or a list containing a single instruction (which
will get put on the data stack). Using combinators such as
cons on lists containing instructions, the genetic program-
ming system has sufficient expressive power to be able to
create arbitrary pieces of code, and by virtue of combina-
tors such as i, it has the ability to execute them. It is not
needed for the evolving programs to itself contain complex
lists. By executing, a complex list can be built:

[cat [3] cons cat [1] cat [2] [*] [+] ·]
[cat [3] cons cat [1] cat [2] [*] · [+]]
[cat [3] cons cat [1] cat [2] · [*] [+]]
[cat [3] cons cat [1] cat · [2] [*] [+]]
[cat [3] cons cat [1] · [2 *] [+]]
[cat [3] cons cat · [1] [2 *] [+]]
[cat [3] cons · [1 2 *] [+]]
[cat [3] · [[1 2 *] +]]
[cat · [3] [[1 2 *] +]]
[· [3 [1 2 *] +]]

The goal of push-forth is to define a light-weight lan-
guage to be used in a light-weight genetic programming sys-
tem. Basic genetic operators such as one-point crossover
and point-mutation can readily be defined. Having the rep-

resentation and the genetic operators defined in this way, a
genetic programming system is easily built using these.

2.1 Evolving instructions
So far a set of primitive instructions have been defined,

but an extension mechanism (words or names) is lacking. In
FORTH a ’word’ is a user-defined instructions, an associa-
tion between a name and a piece of code. In Push, ’words’
are called ’names’, and have been part of the genetic appa-
ratus from the onset. Push programs are allowed to dynam-
ically create instructions and use them. Unlike their coun-
terpart in tree-based genetic programming, ADFs, where at
least some experiments have been conducted that clearly
show advantage, names have not lived up the promise: no
evidence has been found where names have an evolutionary
advantage over just using code directly 1. The modularity
achieved by being able to manipulate and use code is appar-
ently sufficiently powerful to not need an additional method
of indirection.

There are several reasons for discontinuing the use of names
in push-forth as part of the language itself. The most impor-
tant of it lies in breaking the expectation of lexical closure.
Given a set of instructions, a push-forth program is fully
defined by its data stack containing the (partly executed)
program. Adding names to the representation would mean
that additional information needs to be stored next to the
evolving program to determine the current name bindings.
In push-forth, such additional information should reside on
the data-stack, possibly as a dictionary with corresponding
put and get instructions. Using names in this way is not
explored further here.

In this section the use of push-forth as a means to build an
Evolutionary Development Environment (EDE) is explored.
In such a development environment, the user is assisted by a
genetic programming system. The user’s task is to do some
of the task decomposition – the user does this by defining
names for instructions, and test-cases defining the semantics
of those instructions. The EDE will take the definition of
such an instruction and will try to find a push-forth program
that solves all of the test-cases. Once such a program is
found, it is added to the global library and can henceforth
be used by all evolving programs. This evolved instruction
will only be replaced by an instruction that is more efficient,
i.e., that solves the problem faster.

Correctness in the EDE thus defines a particular level of
competence that a program must achieve before it is pro-
moted to inclusion in the library. Once an instruction is
included in the library it becomes available for other genetic
programming runs to solve different problems. This devel-
opment environment works using the following loop:

1. Flip a coin to see if we’re trying to solve an unsolved
problem or improve upon an existing solution

2. Pick an instruction from the category selected above

3. Create a multi-objective search finding a solution

4. If a solution has solved all test cases, compare it with
the best so far (if existing), and add it to the library
if it is faster overall

5. Start again

1Lee Spector, personal communication

1637

The human developer (in this case the author), lets the
system run, and adds new instructions or new testcases if
the evolved instructions have issues because of ommissions
in the test cases. It’s an interactive cycle.

An example input file used in the current system defines
the combinator cake [7] as:

cake

test:

b a cake

[[b] a] [a [b]]

test:

[dup b] [dup a] cake

[[[dup b]] [dup a]] [[dup a] [[dup b]]]

These test cases are evolved on four objectives:

• Hit – a tree based distance measure captures the dis-
tance between the output stack and the desired output.
Distance between numbers is measured by difference in
magnitude

• Speed – number of instructions processed

• Flat Hits – number of hits between elements ignor-
ing elaborate tree structure (array comparison between
flattened lists)

• Flat Type hits – number of correct types on flattened
arrays

The two latter objectives provide additional guidance to
the search by giving points to focussing on producing the
right types and the right elements. Each test case will be
judged on those four objectives. In the case of cake there
are thus 8 objectives in the search. An evolutionary multi-
objective algorithm is used that keeps an archive of the front
of non-dominated individuals and a population of 2000 in-
dividuals, picking parents either from the archive or from
the population. Due to the large number of objectives the
EDE uses, the Pareto-front can grow very large. However,
the constant pressure on size in the objectives and the light-
weight nature of the individuals themselves keep this man-
ageable.

The second test-case for this problem seems supperfluous,
but the use of the dup instruction is aimed to prevent
solutions that will execute (i.e., put on the program stack)
the arguments to the cake function.

For the cake problem, a solution was induced in the li-
brary. It scored perfect on the three ’error’ based objectives
and did that in 34 instruction executions. The resulting pro-
gram reads: [swap unit unit swap cons dup unpair
unit cat unit eval] . The solution makes use of an instruc-
tion unpair . This instruction was defined elsewhere in the
system as:

unpair

test:

[[a] [b]] unpair

[a] [b]

test:

[a b] unpair

a b

It was defined for a different reason, but evolution saw
fit to use it for solving the cake problem. A wide range
of instructions have been induced in this way: combinators
such as cake, fold and zap, polynomials, numbers (π), con-
ditionals, etc. Not all

2.2 Limitations & Future Work
The EDE in its current state is rudimentary. Only in-

structions in a simple input-output relationship can be de-
fined, and no auto-constructive evolution [3] takes place in
the system. Crossovers and mutations are hard-coded, and
do not evolve. The representation is limited to a single array,
and no mechanism is in place to exploit further structural
changes of code. Also the method of measuring fitness needs
work. Finally, the number of instructions is growing, making
it harder for the evolutionary search to find good solutions
from scratch.

The concept of an EDE is compelling: being able to de-
velop computer programs that are by definition testable and
which can therefore be continuously improved. The goal of
an EDE is to be able to create computer programs faster
and in a more reliable fashion. Letting a computer create
the code makes this possible.

3. CONCLUSION
The push-forth language is a concatenative combinator

language that is largely compatible with Joy and Cat, al-
though push-forth lacks the concept of words/names. Legal
Joy or Cat programs are typically legal push-forth programs.
Due to the type-safety inherent in push-forth, the reverse
does not hold. It is a very simple language but has a num-
ber of features that can be important for being a general
purpose genetic programming language:

• Re-entrant and lexical closure – a program is the first
element on the stack. Each evaluation is primitive and
returns control immediately. A program thus executes
in a self-contained manner with no additional setup.
This allows easy storage of partly executed programs.
It is trivial to ’freeze’ a program and pick it up for
further execution later.

• Type safety – skipping data elements on the stack as
a generic mechanism to find correct types

• Predicates for defining instructions – the use of pred-
icates and skipping illegal data elements allow for a
straightforward mechanism to define instructions and
add them to the language

• Computationally complete – loops, recursions are all
part

• Ability to sandbox – computer programs can evalu-
ate other computer programs without the underlying
program taking control

It is hypothesized that these features allow pursuing the
vision for auto-constructive evolution, as set forth by Lee
Spector[3], in particular in the form of an Evolutionary De-
velopment Environment: a place where the human operator
no longer creates code, but let a computer continuously cre-
ate and improve programs that solve test-cases.

1638

4. REFERENCES
[1] Christopher Diggins. Simple type inference for

higher-order stack oriented languages. Technical Report
Cat-TR-2008-001, http://www.cdiggins.com, USA, 4
September 2008.

[2] M. Keijzer, V. Babovic, C. Ryan, M. O’Neill, and
M. Cattolico. Adaptive logic programming. In Lee
Spector, Erik D. Goodman, Annie Wu, W. B. Langdon,
Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco
Dorigo, Shahram Pezeshk, Max H. Garzon, and
Edmund Burke, editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001),
pages 42–49, San Francisco, California, USA, 7-11 July
2001. Morgan Kaufmann.

[3] Lee Spector. Autoconstructive evolution: Push,
pushGP, and pushpop. In Lee Spector, Erik D.
Goodman, Annie Wu, W. B. Langdon, Hans-Michael
Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo,
Shahram Pezeshk, Max H. Garzon, and Edmund
Burke, editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001),
pages 137–146, San Francisco, California, USA, 7-11
July 2001. Morgan Kaufmann.

[4] Lee Spector, Jon Klein, and Maarten Keijzer. The
push3 execution stack and the evolution of control. In
Hans-Georg Beyer, Una-May O’Reilly, Dirk V. Arnold,
Wolfgang Banzhaf, Christian Blum, Eric W. Bonabeau,
Erick Cantu-Paz, Dipankar Dasgupta, Kalyanmoy Deb,
James A. Foster, Edwin D. de Jong, Hod Lipson, Xavier
Llora, Spiros Mancoridis, Martin Pelikan, Guenther R.
Raidl, Terence Soule, Andy M. Tyrrell, Jean-Paul
Watson, and Eckart Zitzler, editors, GECCO 2005:
Proceedings of the 2005 conference on Genetic and
evolutionary computation, volume 2, pages 1689–1696,
Washington DC, USA, 25-29 June 2005. ACM Press.

[5] Lee Spector, Chris Perry, and Jon Klein. Push 2.0
programming language description. Technical report,
School of Cognitive Science, Hampshire College, April
2004.

[6] Lee Spector, Chris Perry, Jon Klein, and Maarten
Keijzer. Push 3.0 programming language description.
Technical Report HC-CSTR-2004-02, School of
Cognitive Science, Hampshire College, USA, 10
September 2004.

[7] Manfred von Thun. Joy: Forth’s functional cousin. In
Proceedings from the 17th EuroForth Conference, 2001.

1639

