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ABSTRACT
Historically, Evolutionary Algorithms (EAs) have been im-
portant for Evolutionary Computation (EC) community for
two reasons: 1) As a simulation of evolutionary processes as
they happen in nature, and 2) as a solution to hard optimiza-
tion problems. With the passage of time EAs have become
increasingly focused on function optimization. Given this
narrowing of vision in the EC community, it is worth re-
visiting a paper written in 1997 by Hans-Paul Schwefel on
the future challenges for EC. In that paper the author argues
that the more an algorithm models natural evolution at work
in the universe, the better it will perform (even in terms of
function optimization). The present paper tests Schwefel’s
hypothesis by designing an EA based on Charles Peirce’s
theory of evolution. Peirce’s theory not only accounts for
biological evolution on earth (as other theories of evolution
do) but also offers an account of global, cosmological and
universal evolution. In going beyond just biological evolu-
tion, Peirce’s theory of evolution meets the criteria suggested
by Schewefel in his 1997 paper. The present paper mainly
contributes in testing the Peircean EA on an extended set of
benchmark optimization functions and compares the results
with a classical EA that is based on Darwin’s theory of evo-
lution. In majority of these comparisons the performance
of the Peircean EA is notably superior. This exercise pro-
vides preliminary results that support Schwefel’s hypothesis.
In return the experiments in evolutionary computation help
provide important insights into Peirce’s theory of evolution.
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1. INTRODUCTION
John Holland’s motivation behind his pioneering Genetic

Algorithms (GA) model was to simulate biological adaptive
systems. In other words, Holland sought to model biological
evolution as proposed in Darwin’s theory. After Holland his
students became increasingly focused on designing GA for
solving optimization problems [5]. While the practical need
for optimization in GA is indeed important, it was only a
marginal concern in Holland’s original GA. Because his GA
sought to model evolution in the natural world, Holland had
to keep in view the fact that for complex adaptive systems
“improvement is usually much more important than opti-
mization” [6]. This is an important point to keep in mind
because as De Jong notes: “There is a subtle but important
difference between ‘GAs as function optimizers’ and ‘GAs
are function optimizers’ ” [4]. De Jong goes on to point
out that there are important insights to be had when this
difference is understood and its implications are taken into
account in developing GAs (and we may add all evolutionary
algorithms here).

This sentiment has been echoed, in slightly different words,
by two other pioneers in Evolutionary Algorithms (EAs).
Hans-Paul Schwefel, one of the founders of Evolution Strate-
gies notes that“organic evolution certainly does not only aim
at finding static optima just once and with ultimate pre-
cision. Organic evolution happens within an ever-changing
environment, where evolvability is more important than pre-
cision” [11]. Lawrence J. Fogel, pioneer in Evolutionary Pro-
gramming notes in [2] that even though,

[t]he solution of complex engineering problems
is important, but the use of evolutionary algo-
rithms need not be restricted to mere function
optimization. The methods can also be used to
gain an understanding of how competitive or co-
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operative agents may interact given a variety of
different available resources and purposes.

The last sentence again stresses upon the significance of
understanding the natural phenomena, and that one of the
objectives of EC is to help natural sciences in this regard.
David B. Fogel aptly notes that“efforts in evolutionary com-
putation commonly derive from one of four different motiva-
tions: improving optimization, robust adaptation, machine
intelligence, and facilitating a greater understanding of bi-
ology” [2]. On the one hand, this clearly indicates that the
spirit of EC is multi-faceted and cannot be reduced in its
entirety to function optimization, or any of the other three
motivations for that matter. But at the same time it can
lend itself to the view that there is an either-or situation
for the EC community–either one can be in EC to improve
function optimization or else, to understand the processes
of natural evolution better. The two tasks appear to be in-
dependent of each other apparently and do not seem to be
meaningfully related.

Perhaps it is because of this sectional view of EC that over
the years the practical focus in EC is increasingly being “re-
duced” to factors such as efficiency, engineering applications
and standardizations. A careless reading of the foregoing
could be taken as a suggestion that the importance of func-
tion optimization or its efficiency in EAs is being trivialized.
We are arguing something very different. What is being sug-
gested is that function optimization and its efficiency can be
enhanced by recognizing that there is a direct relation be-
tween understanding the natural processes of evolution in
greater detail and this could help the EC community in im-
proving the workings of their respective evolutionary algo-
rithms.

Our call for revisiting Schwefel and other pioneer’s re-
search agenda is not because we are interested in the fulfill-
ment of the initial promises, in and of themselves, or that
we are not inclined towards looking at EAs as function op-
timizers. On the contrary, we bring to attention those un-
fulfilled promises only so far as they can help improve the
function optimization capabilities of EAs. The reason we
chose Schwefel to make a case is because of the clarity with
which he has laid bare the relation between two things that
are widely viewed otherwise as being largely unrelated. He
says that,

Current evolutionary algorithms are certainly bet-
ter models of organic evolution. Nevertheless,
they are still far from being isomorphic mappings
of what happens in nature. In order to perform
better, an appropriate model of evolution would
have to comprise the full temporal and spatial
development on the earth (a real global model)
if not within the whole universe. We must be
more modest in order to understand at least a
little of what really happens – as always within
natural sciences.

We will refer to this passage as Schwefel’s hypothesis.
Schwefel’s hypothesis seems to ask for a model of evolution
that goes beyond biological evolution as well and encom-
passes global, cosmological and universal evolution.

We feel that while it is important to advance EC as a
legitimate engineering discipline1, it is equally important
1Task Force (TF) on Future Directions in Evolutionary

to bring EC into a dialogue with other domains of evo-
lutionary sciences, especially evolutionary philosophy and
biology. Towards this end we introduce the evolutionary
theory of Charles Sanders Peirce–the evolutionary philoso-
pher, mathematician, semiotician, and scientist par excel-
lence [10]. Typically evolution has been confined to biolog-
ical processes, which help only explain the last few billion
years of development within the universe. Being a through-
going evolutionary philosopher Peirce sought to understand
not only biological life, but also the emergence of all inani-
mate and animate matter as well as the laws of nature shap-
ing their behavior, in evolutionary terms.

This paper aims to, first of all, build a partnership be-
tween Schwefel and Peirce (and in turn between evolution-
ary computation and evolutionary philosophy respectively).
More importantly, its aim is to test this partnership across
disciplines, experimentally. The metric for the test is pro-
vided by Schwefel’s hypothesis, i.e. by basing our EA model
on a universal evolutionary theory of Peirce, if the perfor-
mance improves in function optimization sense, then we will
have some preliminary evidence of the relevance of Schewe-
fel’s insight for the EC community. Next section discusses
the Peircean evolutionary framework briefly. A novel evolu-
tionary algorithm is extracted from the Peircean framework
at the end of Section 2. It is then tested on mathematical
benchmark problems and the results and experiments ex-
plained in Section 3. Based on the comparative results from
our experimentation, we claim that EC community stands
to gain from the validation of Schwefel’s hypothesis. On the
flip side, Peirce’s theory also stands to gain important in-
sights from the EA experiments, as some of his hypotheses
also get verified consequently, bringing it full circle.

2. CHARLES SANDERS PEIRCE’S THEORY
OF EVOLUTION

According to Jacques Monod, Darwin’s theoretical expla-
nation for evolution is an exquisite mix of “chance and ne-
cessity” [9]. In non-philosophical terms it is a combination
of a variety of chances and a variety of laws. In order for
Darwinian evolution to work it takes as a given, not only
these two agents, but ironically the first batch of replicating
life as well. Being a naturalist, Darwin did not make an
attempt to try and relate the two apparently warring agents
(chance & necessity), or how they “evolved” themselves be-
fore playing a role in the evolution of the universe and its
living forms. However, there is one man that did that after
Darwin.

Charles Sanders Peirce, the 20th century evolutionary prag-
matist, has made major contributions to numerous fields
such as logic and philosophy of science, formal and mathe-
matical logic, topology, linguistics, epistemology and semi-
otics. For Peirce, biological evolution along with its mecha-
nisms did not suddenly come into existence in the universe
some four billion years ago with the emergence of the first
forms of self-replicating RNA. It is a process that is at least
fourteen billion years old – or as old as the universe itself. Bi-
ological evolution is only a specific manifestation of a more

Computation (FDEC) had been part of the Evolutionary
Computation Technical Committee (ECTC), IEEE Compu-
tational Intelligence Society (CIS). The TF held an annual
Workshop as part of the IEEE Congress on Evolutionary
Computation.
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general phenomenon: evolution at the cosmological level.
A natural problem arises regarding the terms that should
be used to describe the basic elements for such a universal
evolutionary theory. If biological terms are used, they are
instantly rendered useless at the level of physics and chem-
istry and cosmology, and vice-versa. Hence, Peirce uses the
technical terms “Firstness,” “Secondness,” and “Thirdness”
(which he calls “categories”) to describe chance, necessity,
and habit respectively2.

In the case of biology Peirce extends the almost linear two
step evolutionary process of random variation followed by
natural selection into a non-linear triadic process. He says,
First is the principle of individual variation or sporting; Sec-
ond, the principle of heredity transmission; and Third, the
process whereby the accidental characteristics become fixed
(including, but not limited to the elimination of unfavorable
characters by natural selection.) [10, 6.32]

For Peirce, wherever there is evolutionary growth in the
universe, there is dynamic interaction between chance, ne-
cessity, and habit. Evolutionary growth, in the most general
sense, is a movement from pure chance or possibility (First-
ness) to brute facts of necessity (Secondness) by the gradual
spreading of habit (Thirdness). The following quote summa-
rizes Peirce’s theory of evolution at the cosmological level:

This theory is that the evolution of the world is
hyperbolic, that is, proceeds from one state of
things in the infinite past, to a different state of
things in the infinite future. The state of things
in the infinite past is chaos, tohu bohu, the noth-
ingness of which consists in the total absence of
regularity. The state of things in the infinite fu-
ture is death, the nothingness of which consists
in the complete triumph of law and absence of all
spontaneity. Between these, we have on our side
a state of things in which there is some absolute
spontaneity counter to all law, and some degree
of conformity to law, which is constantly on the
increase owing to the growth of habit. The ten-
dency to form habits or tendency to generalize
is something which grows by its own action, by
the habit of taking habits itself growing. Its first
germs arose from pure chance. [10, 8.137]

Does the foregoing discussion have any implications for
the EC community? In other words, when the underlying
theory of evolution evolves from a serial two-ness to a dy-
namic three-ness, how does that affect the EC models conse-
quently? For detailed philosophical and technical discussion
on Peirce’s theory and the long process of extracting an algo-
rithm out of it, refer to [1]. Taking the lead from there, one
of the goals of this paper is to test Schwefel-Peirce hypoth-
esis for EC on an extended set of benchmark functions. For
the want of space, we will only briefly describe the algorithm
and then get to the results.

2Peirce’s use of habits is different from its Lamarckian usage:
“For Peirce, habits are not provisional adaptive responses to
fluctuating environmental conditions; they are steps on the
universal road from indeterminacy to law, a road traveled
by objects as well as by organisms...Habit-taking is a plastic
faculty. The peculiar characteristic of habit is: “not acting
with exactitude” ” [8, pg. 365]

2.1 Peircean Evolutionary Algorithms
In most basic terms the standard EAs implementation

is a two-pronged strategy that comes up in EA literature
under different names: exploration-exploitation, variation-
selection, chance-necessity [3]. If we could re-write that in
Peircean terminology it would roughly translate into First-
ness Secondness respectively. The foremost difference is that
the Peircean EA would have a Third (generalizing) element
working simultaneously, that we implement in the form of
clustering. The second difference is that for Peirce the mean-
ing of Firstness is not confined to variation, and the meaning
of Secondness is not captured entirely by selection either.
But thirdly and more importantly the relationship and in-
terplay between the three elements of evolution builds an
entirely different system and hence gets translated into an
entirely different evolutionary algorithm.

Figure 1: Pseudo code for Peircean Evolutionary
Algorithm

Figure 1 lays out the basic algorithm in the form of a
pseudo code. The Thirdness principle’s most important con-
tribution is that the population shall cooperate and survive
in cluster based communities. The Secondness principle dic-
tates the terms under which individuals and clusters interact
with each other through various operators of recombination
and selection. The Firstness principle introduces and re-
tains novelty in the population through various operators of
variation.

Peircean EA, when stated simply, is this: Until the stop-
ping criteria are met, 1) distribute the population in clusters.
2) First each cluster internally generates its next genera-
tion. 3) Next each cluster’s fittest individuals make an inter-
cluster information exchange. 4) Finally a small number of
new individuals also get introduced into the population. For
detailed discussion of the Peircean as well as the Darwinian
EA, parameter settings and the experimental setup, refer to
[1].

3. EXPERIMENTAL RESULTS
For this article the extended benchmark of 15 mathemati-

cal functions of up to 100 dimensions has been used3. For the
lack of space refer to [7] for detailed description of each func-
tion. For most of the functions the 30 dimensional form has
been used, while F7 and F9 are 100-D. Table 1 lists the com-
parative results of both the Peircean (P-EA) and the classi-
cal Darwinian evolutionary algorithm (D-EA) when they are
run for 50 times against each function. For 50 independent

3Results for 3 out of 15 functions were pending till the time
of submission for this article.
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Table 1: Comparison between Peircean-EA and
Darwinian-EA

F.
Mean number
of generations

Mean function
value (standard
deviation)

Global
min
func.
value

P-EA D-EA P-EA D-EA

F1 2895.2 2286.48
-12569.3
(0.6195)

-10962.6
(305.88)

-12569.4

F2 2308.22 3955.72
0.0069
(0.0017)

26.61
(4.08)

0

F3 1502.82 1513.74
0.2730
(0.0324)

2.3272
(0.2686)

0

F4 1618.92 1689.12
0.0198
(0.0233)

0.4264
(0.4000)

0

F7 8984.52 2656.7
-95.08
(0.8304)

-73.93
(1.8858)

-99.2784

F9 8414.04 3826.02
-78.32
(0.0087)

-58.68
(1.5735)

-78.3324

F10 7840.6 1764.06
52.71
(30.02)

1899.87
(900.19)

0

F11 1502.74 1527.76
0.0570
(0.0097)

0.0780
(0.1436)

0

F12 1620.76 1606.7
0.5241
(0.2964)

0.5969
(0.3046)

0

F13 1500 1647.4
0.0146
(0.0023)

0.0274
(0.1416)

0

F14 10000 2770.18
3307.14
(2946.47)

325689.5
(92779.9)

0

F15 2750.94 3120.78
0.4978
(0.5710)

29.1570
(13.3290)

0

runs, what the table lists against each function is how P-EA
and D-EA perform statistically in terms of, 1) the average
number of generations it took the EA to converge, 2) the
average of the best function values that the EA converged
at, and 3) the standard deviation of those values.

The most interesting observation is that apart from one
exception (F14), P-EA, by the time it stops, is almost always
very close to the global minimum value for each function,
that too with a small standard deviation value. This is not
the case for D-EA. But more important than that is the fact
that for P-EA evolvability, improvement and growth seem
to be vital. In terms of number of generations (or function
evaluations equivalently) P-EA seems to be more efficient
or at par with D-EA in most of the cases. In some cases
where D-EA makes an early stop (e.g. F7,F9,F10,F14) it is
always the case where D-EA has stopped because of prema-
ture convergence to a local minimum due to stagnation of its
population. This fact is evident by looking at the respective
mean function value columns. In all of these tough specific
cases, P-EA keeps on evolving its population and gets much
closer to the global minimum before stagnating. The results
would make more sense when the above-mentioned analysis
is coupled with the stagnation analysis and cluster analysis
[1].

4. CONCLUSIONS
This short paper explores the idea of opening up the ini-

tial unfulfilled promises of the EC pioneers. It does that
by bringing Peirce’s universal theory of evolution into a
conversation with Schwefel’s hypothesis. It then tests this
new partnership on an extended benchmark of mathemat-
ical functions. The analyses of this extended benchmark
results are preliminary at this stage but they do 1) help af-
firm Peirce’s theory of evolution to some extent, 2) bridge
the natural theory-function optimization gap, 3) potentially
present a natural solution to the issue of premature con-
vergence/stagnation but most importantly, 4) invite the EC
community to revisit the historically legitimate but forsaken
possibilities for its future exploration.
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