
Generation of Tests for Programming Challenge Tasks
Using Multi-Objective Optimization

Maxim Buzdalov
University ITMO

49 Kronverkskiy prosp.
Saint-Petersburg, Russia

mbuzdalov@gmail.com

Arina Buzdalova
University ITMO

49 Kronverkskiy prosp.
Saint-Petersburg, Russia

abuzdalova@gmail.com

Irina Petrova
University ITMO

49 Kronverkskiy prosp.
Saint-Petersburg, Russia

petrova@rain.ifmo.ru

ABSTRACT

In this paper, an evolutionary approach to generation of
test cases for programming challenge tasks is investigated.
Multi-objective and single-objective evolutionary algorithms,
as well as helper-objective selection strategies, are compared.
Particularly, a previously proposed method of choosing be-
tween helper-objectives with reinforcement learning is con-
sidered. This method is applied to the multi-objective evo-
lutionary algorithm for the first time. Results of the ex-
periment show that the most reasonable approach for the
considered problem is using multi-objective evolutionary al-
gorithm with automated helper-objective selection.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Data generators; I.2.6 [Artificial Intelligence]: Learning

General Terms

Algorithms, Experimentation, Performance

Keywords

Programming challenges, genetic algorithms, multi-objective,
helper-objectives, reinforcement learning, testing

1. INTRODUCTION
In this paper, a method to generate test cases for pro-

gramming challenge tasks using multi-objective evolution-
ary algorithms is described. A programming challenge [1, 2,
4, 23] is a competition where participants compete in writ-
ing computer programs which solve certain problems. A
programming challenge task includes the formulation of the
problem, requirements for the input and output data, time
and memory limits.

In most types of programming challenges the correctness
of solutions is checked by running them on a number of pre-
written test cases and then checking the answer they give. If

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

a solution produces a correct answer for each test case while
not exceeding time and memory limits, it is considered to
be correct.

Test cases for programming challenge tasks are typically
generated either by hand or by programs written by jury
members that create test cases according to some prede-
termined patterns or at random. Thus, generation of such
test cases requires deep knowledge of the programming task
and its possible solutions, and the quality of the test cases
depends very much on the human factor.

One of the ways to make the situation better is to auto-
mate the process of test case creation. In this work, test case
generation is performed using single-objective evolutionary
algorithms (EAs), as well as multi-objective ones (MOEAs)
[10, 11]. The latter is exclusive for this paper. The previous
works on this topic show that the single-objective evolution-
ary approach is suitable for generation of tricky test cases
impossible for a human to come up with [6, 7].

We generate test cases for testing solution performance
time. Performance time is a hard objective to be optimized,
since it is noisy and takes only several different values, at
least in the case of the considered problem. So we use
the multi-objectivization approach [18, 21] and the helper-
objectives approach [16, 19]. Both approaches are based on
using some additional objectives to be optimized. Incorpo-
rating such objectives allows to use MOEAs and compare
them with single-objective EAs.

2. PROBLEM DESCRIPTION
In this section a programming challenge task and its sam-

ple solution are considered. The aim of the research, which is
to efficiently generate test cases for the considered solution,
is also discussed in detail.

2.1 Task Statement
As in [6], we consider the programming challenge task

“Ships. Version 2”. This task is located at the Timus Online
Judge under the number 1394 [3].

The task formulation is as follows. There are N ships,
each of length si, and M havens, each of length hj . Ships
need to be allocated to the havens, such that the total length
of all ships assigned to the j-th haven does not exceed hj .
It is guaranteed that the correct assignment always exists.
The constraints are as follows:

• N ≤ 99, 2 ≤ M ≤ 9, 1 ≤ si ≤ 100;

•
∑

si =
∑

hj ;

• the time limit is 1 second;

1655

Individual: 0, 3, 7, 5
︸ ︷︷ ︸

15

, 0, 1, 2
︸︷︷︸

3

, 0, 4, 7, 6
︸ ︷︷ ︸

17

, 0, 0, 1, 3, 8
︸ ︷︷ ︸

12

Ships: 3, 7, 5, 1, 2, 4, 7, 6, 1, 3, 8

Havens: 15, 3, 17, 12

Figure 1: Individual: ships and havens

• the memory limit is 64 megabytes.

This problem is a special case of the multiple knapsack
problem, which is known to be NP-hard in the strong sense [22]
(i.e. no solutions are known which have a running time poly-
nomial of any numbers in the input). Due to this fact and
high limits on the input data, it is very unlikely that every
possible problem instance can be solved under the specified
time and memory limits. However, for the most sophisti-
cated solutions it is very difficult to construct a test case
which makes them exceed the time limit.

2.2 Sample Solution
For this paper, we chose a solution to the challenge task

described above which needed the smallest number of gen-
erations of the genetic algorithm [6] to defeat. The solution
uses a recursive greedy algorithm with elements of dynamic
programming, which is applied to random permutations of
the input data until it finds an answer. Following the ap-
proach in [6], we introduce three counters: P, which is incre-
mented on each data permutation, R, which is incremented
on every call of the recursive procedure, and I, which is
incremented in the inner loops residing in the recursive pro-
cedure. Another counter, T, which is the target objective
and equals the running time of the solution on the test case,
in milliseconds, is added by the testing framework. The
described counters are used as objectives in evolutionary al-
gorithms considered below.

3. APPROACH
In order to generate test cases for the described task, we

propose a number of evolutionary methods. We compare
single-objective optimization and multi-objective one. Due
to performance reasons and suggestions proposed in [16],
only two-objective MOEAs are considered. The first ob-
jective is the target one and the second one is a helper-
objective. The details described below are common for both
EAs and MOEAs.

3.1 Individual Encoding
We use a special test encoding scheme similar to one pro-

posed in [6]. The individual is a list of integer numbers from
0 to 100. Each positive integer in this list produces a ship,
and each interval of consecutive positive integers produces a
haven (see Figure 1).

Let S1, . . . , SN be a sequence of ships generated from an
individual, and H1, . . . ,HK be a sequence of havens. A test
case which is generated from these sequences has the first
and the last ships swapped, e.g. SN , S2, . . . , SN−1, S1, so
that the solutions can not solve the problem too easily by
assigning ships to havens greedily.

This kind of test case encoding satisfies two most difficult
conditions from Section 2.1: first, the sum of lengths of ships
is equal to the sum of lengths of havens, and second, the
solution always exists. Note that, for a test case generated at
random rather than using the described encoding, checking
the latter condition is at least as hard as solving the problem.

3.2 Evolutionary Operators
A new individual is generated by putting L = 50 randomly

generated integers to a list. The integers are generated as
follows: zero is selected with the probability of 1/5, other-
wise a positive value is selected equiprobably from a range
of [1; 100]. The size of list 50 is chosen experimentally, and,
despite the fact not every test case can be produced, the
results are good nevertheless.

The mutation operator replaces every integer in the indi-
vidual with a probability of 1/L with an integer generated
randomly as above.

The following variation of two-point crossover operator
is used. Assume that the elements of the individual are
indexed from 1 to L. First, an exchange length X is selected
randomly from a range of [1;L]. Second, an offset F1 in the
first individual is selected randomly from the range of [1;L−
X+1]. Third, an offset F2 in the second individual is selected
randomly from the same range independently of F1. Last,
the list subranges [F1, F1 +X− 1] and [F2, F2 +X− 1] from
the first and second individuals respectively are exchanged.

3.3 Automated Selection of Helper-Objectives
The helper-objective to be optimized can be either chosen

manually and stay the same during the run (fixed helper-
objective), or automatically selected by some heuristics at
different stages of the run (dynamic helper-objective). The
strategies used to select a dynamic helper-objective are con-
sidered below.

It is proposed to randomly choose the helper-objective
in [16] and optimize it for some fixed period, then choose
another one and continue. Each helper should be tried at
least once. The disadvantage of this approach is that the
problem specific is not taken into account. It is mentioned
in [16] that some adaptive selection method is needed.

We propose to use another selection strategy that is based
on reinforcement learning (RL) [25, 17, 15]. This approach
allows to learn and use some features of the particular prob-
lem. It is based on the EA + RL method, that we previously
proposed in [9, 8, 5]. To our knowledge, it is the only method
where reinforcement learning is used to choose objectives, or
fitness functions [14, 20].

The EA + RL method, or MOEA + RL in case of multi-
objective optimization, is described below after [9]. In order
to set the reinforcement learning task [25], we should define
the set of actions A, a definition of the environment states
s ∈ S and the reward function R : S × A → R. Let x be an
individual evolved by the evolutionary algorithm. Denote
the i-th generation by Gi. The set of actions A corresponds
to the set of all objectives, consisting of t – the target ob-
jective and the elements of H – the set of helper-objectives:
A = H ∪ {t}. Taking an action means choosing some ob-
jective fi ∈ A as the fitness function that is used in the
generation Gi.

Let us define the reward function R : S × A → R, which
is calculated after choosing the criterion fi in the state si−1

and generating Gi. It depends on the difference between

1656

fitness of individuals at sequential generations and is the
highest when fitness increases:

R(si−1, fi) =

∑

x∈Gi
t(x)−

∑

x∈Gi−1
t(x)

∑

x∈Gi
t(x)

+

+ k
∑

f∈H

∑

x∈Gi
f(x)−

∑

x∈Gi−1
f(x)

∑

x∈Gi
f(x)

,

where k is a discount parameter. Notice that the higher is
the reward, the bigger is the increase of the target fitness.

In the single-objective EA only one objective is optimized
at once. Reinforcement learning is used to choose and dy-
namically change this objective. Since reinforcement learn-
ing maximizes the total reward, which depends on the tar-
get fitness, EA is guided to optimize the target objective. In
MOEA, reinforcement learning is used to choose the helper-
objective, which is optimized together with the target one.

4. EXPERIMENT
During the experiment, test cases are generated using

both EA and MOEA. Every objective is optimized as a fixed
one in EA and MOEA. Selection strategies for choosing a
dynamic helper-objective are used in both EA and MOEA.
The settings of the EA, the MOEA and the reinforcement
learning algorithm are described below.

All variations of the single-objective EA are run for 100
times. Most of the MOEA variations are run for 20 times,
since it takes a very long time to perform the runs. The
exception is the MOEA with reinforcement strategy, which
is run for 100 times. All the results are averaged.

4.1 Settings
In both EA and MOEA the size of the generation is 200.

An algorithm is terminated either when an individual, for
which the running time of the tested solution exceeds five
seconds, is evolved, or 10000 generations are processed.

In the single-objective EA, which is a genetic algorithm, to
create a new generation a tournament selection with tour-
nament size of 2 and the probability of selecting a better
individual of 0.9 is used. After that, the crossover and mu-
tation operators are applied with the probability of 1.0. To
form a new generation, the elitist strategy is used with the
elite size of five individuals. If for 1000 generations the best
fitness value does not change, then the current generation is
cleared and initialized with newly created individuals.

For optimization of more than one objective, a fast variant
of the NSGA-II algorithm [12] proposed in [13] is used. In
the random selection strategy, a helper-objective is chosen
randomly and being optimized during 50 generations. When
each objective is tried, the process repeats.

Delayed Q-learning is chosen to be the reinforcement learn-
ing algorithm [24]. It is restarted every 50 generations,
which prevents stagnation. The update period is m = 0.5,
the bonus reward ε = 0.001 and discount factor γ = 0.1.
The discount parameter used to calculate the reward is set
to k = 0.5. All the parameter values are set on the basis of
preliminary experiment results.

4.2 Mean and Diversity Recalculation

Table 1: Test generation results

Algorithm FFs OK, % Generations
Mean σ

Fixed objective
GA I 99 2999 1986
GA R 93 3153 3742
GA P 54 12621 12770
GA T 0 – –
NSGA-II T, I 100 203 119
NSGA-II T, R 100 440 381
NSGA-II T, P 100 448 360

Dynamic objective
GA + RL all 65 9636 9538
GA + Random all 57 13602 7929
NSGA-II + RL all 99 895 1215
NSGA-II + Random all 100 882 786

For performance reasons, the number of generations in the
experiment is limited to 10000. This means that for some
runs the goal of the optimization (evolving a good test case)
may not be reached, and it is impossible to calculate the
average of the number of generations until finish.

However, it is possible to estimate this value, if we as-
sume that the algorithm is restarted when the number of
generations reaches 10000 and the goal of optimization is
not reached. Let ES be the average of the number of gener-
ations for successful runs, R be the ratio of successful runs,
G be the maximum number of generations until restart, DS

be the standard deviation of the number of generations for
successful runs. For the sake of conciseness, we provide the
formulae for the estimated total expectation E and devia-
tion D without proof:

E = ES +
1−R

R
G;

D =

√

E2

S − E2 +D2

S +
1−R

R
(G2 + 2GE).

4.3 Results
Results of the experiment are presented in Table 1. “Ran-

dom” stands for the random strategy used to select a dy-
namic helper, which was described in Section 3.3. “RL”
stands for the reinforcement-based strategy.

One can conclude that, for this problem, multi-objective
optimization performs better than the single-objective one.
Nevertheless, it is worth noting that in the single-objective
case reinforcement helper selection strategy outperforms the
random one.

Which kind of helpers is more efficient – a fixed or a dy-
namic one? It can be seen that two-objective MOEA with
a fixed objective yields the best performance. On the other
hand, in the general case, using such approach means per-
forming a number of runs for trying all the objectives, since
we have no prior knowledge about the efficiency of different
objectives.

Using dynamic helper approach means that one run is
enough. In average, MOEA with dynamic helper performs
worse than the best fixed-objective algorithm, but notice-
ably better than the original EA that optimizes performance
time of the tested solution only. So we suggest using either

1657

NSGA-II + Random or NSGA-II + RL for test case generat-
ing, since results obtained using random and reinforcement
helper selection strategies are similar in the MOEA case.

5. CONCLUSION
Generation of tests for a programming challenge task was

performed using different kinds of evolutionary algorithms.
A number of helper-objectives were implemented. Multi-
objective evolutionary algorithms turned to be more efficient
for this problem than single-objective ones. Using a multi-
objective evolutionary algorithm along with dynamic helper-
objective is both a general and efficient approach.

A reinforcement helper-objective selection was considered.
It outperformed the conventional random selection in the
single-objective case, but was similar in the multi-objective
case. Future work involves defining a reasonable state and
reward definitions in order to increase the efficiency of re-
inforcement learning. It will be essential to show that with
these definitions helper-objective selection problem can be
modeled as some kind of Markov decision process.

6. REFERENCES

[1] ACM International Collegiate Programming Contest.
http://cm.baylor.edu/welcome.icpc.

[2] International Olympiad in Informatics.
http://www.ioinformatics.org.

[3] Problem “Ships. Version 2”.
http://acm.timus.ru/problem.aspx?num=1394.

[4] Programming Contests at TopCoder.
http://www.topcoder.com/tc.

[5] A. Afanasyeva and M. Buzdalov. Choosing best fitness
function with reinforcement learning. In Proceedings of
the Tenth International Conference on Machine
Learning and Applications, ICMLA 2011, volume 2,
pages 354–357, Honolulu, HI, USA, 2011. IEEE
Computer Society.

[6] M. Buzdalov. Generation of tests for programming
challenge tasks using evolution algorithms. In
Proceedings of the 2011 GECCO Conference
Companion on Genetic and Evolutionary
Computation, pages 763–766, New York, US, ACM,
2011.

[7] M. Buzdalov. Generation of tests for programming
challenge tasks on graph theory using evolution
strategy. In Proceedings of the 11th International
Conference on Machine Learning and Applications,
ICMLA 2012, volume 2, pages 62–65, 2012.

[8] A. Buzdalova and M. Buzdalov. Adaptive selection of
helper-objectives with reinforcement learning. In
Proceedings of the 11th International Conference on
Machine Learning and Applications, ICMLA 2012,
volume 2, pages 66–67, 2012.

[9] A. Buzdalova and M. Buzdalov. Increasing efficiency
of evolutionary algorithms by choosing between
auxiliary fitness functions with reinforcement learning.
In Proceedings of the 11th International Conference on
Machine Learning and Applications, ICMLA 2012,
volume 1, pages 150–155, 2012.

[10] C. Coello, G. Lamont, and D. V. Veldhuisen.
Evolutionary Algorithms for Solving Multi-Objective

Problems. Genetic and Evolutionary Computation
Series. Springer, 2007.

[11] K. Deb. Multi-objective Optimization Using
Evolutionary Algorithms. John Wiley & Sons, 2001.

[12] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. Transactions on Evolutionary Computation,
6(2):182–197, 2002.

[13] R. G. L. D’Souza, K. C. Sekaran, and A. Kandasamy.
Improved NSGA-II based on a novel ranking scheme.
Computing Research Repository, abs/1002.4005, 2010.

[14] A. E. Eiben, M. Horvath, W. Kowalczyk, and M. C.
Schut. Reinforcement learning for online control of
evolutionary algorithms. In Proceedings of the 4th
international conference on Engineering
self-organising systems ESOA’06, pages 151–160.
Springer-Verlag, Berlin, Heidelberg, 2006.

[15] A. Gosavi. Reinforcement learning: A tutorial survey
and recent advances. INFORMS Journal on
Computing, 21(2):178–192, 2009.

[16] M. T. Jensen. Helper-objectives: Using multi-objective
evolutionary algorithms for single-objective
optimisation. Journal of Mathematical Modelling and
Algorithms, 3(4):323–347, 2004.

[17] L. P. Kaelbling, M. L. Littman, and A. W. Moore.
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research, 4:237–285, 1996.

[18] J. D. Knowles, R. A. Watson, and D. Corne. Reducing
local optima in single-objective problems by
multi-objectivization. In Proceedings of the First
International Conference on Evolutionary
Multi-Criterion Optimization, EMO ’01, pages
269–283, London, UK, 2001. Springer-Verlag.

[19] D. F. Lochtefeld and F. W. Ciarallo. Helper-objective
optimization strategies for the job-shop scheduling
problem. Applied Soft Computing, 11(6):4161 – 4174,
2011.

[20] S. Müller, N. N. Schraudolph, and P. D.
Koumoutsakos. Step size adaptation in evolution
strategies using reinforcement learning. In Proceedings
of the Congress on Evolutionary Computation, pages
151–156. IEEE, 2002.

[21] F. Neumann and I. Wegener. Can single-objective
optimization profit from multiobjective optimization?
In J. Knowles, D. Corne, K. Deb, and D. R. Chair,
editors, Multiobjective Problem Solving from Nature,
Natural Computing Series, pages 115–130. Springer
Berlin Heidelberg, 2008.

[22] D. Pisinger. Algorithms for Knapsack Problems. PhD
thesis, University of Copenhagen, February 1995.

[23] S. S. Skiena and M. A. Revilla. Programming
Challenges: The Programming Contest Training
Manual. Springer Verlag, New York, 2003.

[24] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and
M. L. Littman. PAC model-free reinforcement
learning. In Proceedings of the 23rd International
Conference on Machine Learning (ICML 2006), pages
881–888, 2006.

[25] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, Cambridge,
MA, USA, 1998.

1658

