
A Service Oriented Evolutionary Architecture:
Applications and Results

Pablo García-Sánchez
Dept. of Computer Architecture

and Computer Technology
University of Granada, Spain

pgarcia@atc.ugr.es

ABSTRACT

This paper shows the stage of development of a Service Ori-
ented Architecture for Evolutionary Algorithms and the first
results obtained in two different areas. The abstract ar-
chitecture is presented, with its assocciated implementation
using a widely used technology. Results attained in exper-
iments with parameter adaptation in distributed heteroge-
neous machines are presented and the usage of the architec-
ture in Evolutionary Art is also applied.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; D.2.12 [Software

Engineering]: Interoperability—Distributed objects

General Terms

Algorithms

Keywords

Service Oriented Architecture, Framework, Parameter Set-
ting, Distributed Algorithms, Island Model, Evolutionary
Art

1. INTRODUCTION
Ian Foster defined in [6] the term Service-Oriented Sci-

ence, that is, scientific research using interoperable and dis-
tributed networks of services, where the key of success is
in the uniformity of interfaces, so researchers can discover
and access services without developing specific code for each
data source, program or sensor. Therefore, this paradigm
has the potential to increase scientific productivity thanks to
the wide set of available distributed tools, and also increase
the automation of computation data analysis. On the other
hand, other trends such as Cloud Computing [3] and GRID
[5] are leading to heterogeneous computational devices work-
ing at the same time. Moreover, many laboratories do not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

utilize classic clusters, but the usual workstations used by
scientists can behave in group as a heterogeneous cluster.

Nowadays, there exist many frameworks for Evolutionary
Algorithms (EAs), but all of them are Object Oriented stat-
ically programmed, not taking the advantages that Service
Oriented Computing is able to offer. As services must be
well-defined, encapsulated and reusable, it is necessary to
abstract enough to have a good EA design. In [7] authors
discuss about genericity in evolutionary computation soft-
ware tools. Although their discussion is based in Object
Oriented programming, the genericity of an EA framework
can be applied to develop Evolutionary Computation (EC)
services, and extended with new functionalities.

Our previous work [8] presents an abstract Service Ori-
ented Architecture for Evolutionary Algorithms (SOA-EA),
describing the set of guidelines and steps to migrate from
traditional development to SOA. It also presents a specific
implementation, called OSGiLiath: an environment for the
development of distributed algorithms, extensible via plug-
ins architecture, and based on a wide-accepted software spec-
ification (OSGi: Open Services Gateway Initiative [12]).

This paper shows how this implementation has been used
to obtain results in two different areas: one in the algorith-
mic scope (parameter tuning in heterogeneous devices [2])
and also in the application of EAs (Evolutionary Art [4]).

The rest of the work is structured as follows: after the
state of the art, we present the developed service oriented
architecture in Section 3. Then, the results of the first ex-
periment in heterogeneous clusters are shown (Section 4),
followed by an application in Evolutionary Art (Section 5).
Finally conclusions and future lines of work are shown.

2. STATE OF THE ART
Even though the Service Oriented Architecture is exten-

sively used in software development, it is not widely ex-
tended in the EA software scope. Firstly, there exist Ob-
ject Oriented frameworks, such as Algorithm::Evolutionary,
JCLEC or jMetal. Users implement specific interfaces of
these frameworks (such as individual or crossover) and they
group them in the source code. For example, creating an op-
erator object that groups several operators. However, these
frameworks are not compatible between them. For exam-
ple, the operators created in JCLEC can not be used in
jMetal (despite both are programmed in Java). Also, they
can not control the services (operators) outside the source
code. Parallelism and distribution are added in other frame-
works, such as MALLBA, DREAM or ECJ, but using exter-

1663

nal libraries (such as MPI or DRM), so the code that uses
these libraries is mixed with the algorithm’s code.

Even being distributed, these frameworks can not com-
municate with each other. HeuristicLab is one of the few
plug-in and service oriented frameworks. It uses web ser-
vices for communication, but just to distribute the load,
after consulting a central database of available jobs. The
work [13] contains a comparison and the references of the
previous frameworks.

Another related field is the heterogeneous evolutionary
computing, where two areas exist: heterogeneous hardware
and heterogeneous parameters. In the first area authors
study or adapt algorithms depending on the machine con-
figuration [2, 11]. In the area of heterogeneous parameters,
setting in each island (node) a different sets of parameters
can also increase the performance of distributed EAs, as ex-
plained in [10, 15].

Our work presents a combination of these ideas, where
a parameter tuning given by the computational power of
the machines is performed. To our knowledge, there are no
works that modify parameters of the EA depending of the
node where the island is being executed.

3. A SERVICE ORIENTED ARCHITECTURE

FOR EVOLUTIONARY ALGORITHMS
In [8] we presented an abstract architecture composed by

loosely coupled, highly configurable and language-indepen-
dent services for Evolutionary Computation (called SOA-
EA). As an example of implementation of this architecture,
a complete process development using a specific service ori-
ented technology (OSGi) was explained. With this imple-
mentation, less effort than classical development in integra-
tion, distribution mechanisms and execution time manage-
ment has been attained. In addition, steps, ideas, advan-
tages and disadvantages, and guidelines to create service
oriented evolutionary algorithms were explained.

In [7], six criteria for qualify EA frameworks were pre-
sented: generic representation, fitness, operator, model, pa-
rameters management and configurable output. In our pre-
vious work we have shown how SOA follows these lines of
genericity, but can also extend them:

• Genericity in the service interfaces: service interfaces
are established to create new implementations. Fur-
thermore, these interfaces must be abstract enough to
avoid their modification.

• Programming language independence: for example, ser-
vices implemented in Java can use services implemented
in C++ and vice-versa.

• Distribution transparency: it is not mandatory to use
a specific library for the distribution, or modify the
code to adapt the existing operators.

• Flexibility: easy to add and remove elements to use
the self-adaptation or other mechanisms.

A specific implementation of our architecture (called OS-
GiLiath) has been developed using the OSGi service ori-
ented technology, with a number of services already devel-
oped. These services can be combined in several ways to
obtain different algorithms, and can be dynamically bound
to change the needed EA features. In addition, new services

can be added in execution time using our implementation.
No specific source code for a basic distribution needs to be
added, and no source code has been modified to achieve the
previous tasks.

4. ADAPTING THE POPULATION SIZE TO

HARDWARE
One of the first experiments performed with OSGiLiath

has been to establish the effect of the population size in ho-
mogeneous and heterogeneous clusters. The algorithm to
be improved is a distributed Genetic Algorithm. The algo-
rithm is steady-state: the offspring is mixed with the parents
and the worst individuals are removed. A ring topology is
used, and the best individual is sent after a fixed number
of generations of each node (64). Two different parame-
ter configurations have been used: 64 individuals per node
(homogeneous size) and a different number of individuals
proportional to the computational power of each node. The
uniform crossover is used (with a rate of 0.5) and bit-flip
mutation (with a probability of 1/genome size).

The problems to evaluate are the Massively Multimodal
Deceptive Problem (MMDP) [9] and the OneMax problem
[16]. Each one requires different actions/abilities of the GA
at the level of population sizing, individual selection and
building-blocks mixing. The chromosome length is 150 for
MMDP and 5000 for OneMax.

To test the algorithm two different computational systems
have been used: an heterogeneous cluster and an homoge-
neous cluster. The first one is formed by 4 different comput-
ers of our lab with different processors, operating systems
and memory size. The latter is a dedicated scientific cluster
formed by homogeneous nodes. Table 1 shows the features
of each system.

Acronyms for each configuration are HoSi (homogeneous
population size), HeSi (heterogeneous population size), HoHa
(homogeneous hardware) and HeHa (heterogeneous hard-
ware).

Each different configuration has been tested 30 times. The
number of individuals in each node of the HeSi configuration
is proportional to the computational power of each node.
In this case the computational power has been calculated
comparing the average number of generations obtained in
the nodes of the HoSi/HeHa configuration for the MMDP
problem. Thus, the HeSi configuration uses 98, 84, 66, and
8 individuals (from N1 to N4). Note that, having two nodes
with the same processors and memory (N1 and N2), they
have different computational power.

4.1 Results
The objectives of parallel programming are to tackle large

computational problems, increase the performance of algo-
rithms in a finite time, or reduce time. In this work we
focus in the last objective. As claimed by [1], the number
of evaluations can be misleading in the parallel algorithms
area. In our case, for example, the evaluation time is dif-
ferent in each node of the heterogeneous cluster, and the
real algorithm speed could not be reflected correctly. The
total number of generations, and the maximum number of
generations of the slower node are shown. It is difficult to
compare between HoHa and HeHa for the same reason: the
evaluation time is different in each system (and also in each
node).

1664

Table 1: Details of the clusters used.
Name Processor Memory Operating System Network

Homogeneous cluster
Cluster node Intel(R) Xeon(R) CPU E5320 @ 1.86GHz 4GB CentOS 6.7 Gigabit Ethernet

Heterogeneous cluster
N1 Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz 4GB Ubuntu 11.10 (64 bits) Gigabit Ethernet
N2 Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz 4GB Ubuntu 11.04 (64 bits) Gigabit Ethernet
N3 AMD Phenom(tm) 9950 Quad-Core Processor @ 1.30Ghz 3GB Ubuntu 10.10 (32 bits) 100MB Ethernet
N4 Intel (R) Pentium 3 @ 800MHz 768 MB Ubuntu 10.10 (32 bits) 10MB Ethernet

4.1.1 MMDP Problem

Table 2 shows the results for the MMDP problem. In
the HeHa system, adapting the population to the computa-
tional power of each node makes the algorithm end signifi-
cantly faster. This can be explained by the evaluation time
is different in all nodes. On the other hand, in the HoHa sys-
tem, setting the same population sizes makes no difference
in time, that is, changing this parameter does not influence
the performance of the algorithm (no statistical significance
attained).

4.1.2 OneMax Problem

Results for OneMax are shown in Table 3. In this prob-
lem, adapting the population sizes decreases significantly
the time for solving in the heterogeneous cluster. In the
homogeneous system, the effect of changing the population
sizes is more evident, and this time the time are reduced
significantly.

The efficiency on OneMax problems depends more on the
ability to mix the building-blocks, and less on the genetic
diversity and size of the population (as with MMDP). No
genetic diversity is particularly required among the individ-
uals. When properly tuned, a simple Genetic Algorithm is
able to solve OneMax in linear time. Sometimes, problems
like OneMax are used as control functions, in order to check
if very efficient algorithms on hard functions fail on easier
functions.

In conclusion, adapting the population size to computa-
tional power of the nodes iof a heterogeneous cluster in-
creases the speed in distributed EAs.

5. COMPARING HISTOGRAMS IN EVOLU-

TIONARY ART
OSGiLiath has also been used to study the differences in

using the information of the HSV (Hue, Saturation, Value)
and RGB (Red, Green, Blue) histograms during the evolu-
tion of an aesthetical image. A service to access to Pro-
cessing [14], a programming framework designed for visual
artists, have been implemented. In addition, services to
measure the fitness, and implementations of individuals are
also available in OSGiLiath. Processing is used inside the
EA to model the individuals, generate their associate images
and extract information from them (HSV, RGB and Average
histograms) to fit with the histograms of a test image.

A steady-state evolutionary algorithm has been used. Each
individual is randomly generated at the initialization of the
EA. The genome size is 50 elements (circles of maximum
radium of 128 pixels). Population size has been set to 32 in-
dividuals. Uniform crossover rate is 0.5, and a binary tour-
nament has been chosen for selection. Mutation probability
is 0.04 (the usual value of 1/genomesize). Finally, the image
size for each individual is 256x256 pixels. The individuals

Table 4: Results for the different fitness. Only one

histogram type is used, but the other values ob-

tained are also added.

Differences used Obtained RGB Obtained HSV Obtained Average
RGB 0.267 ± 0.012 0.170 ± 0.010 0.218 ± 0.009
HSV 0.227 ± 0.017 0.265 ± 0.021 0.246 ± 0.010

Average 0.173 ± 0.012 0.294 ± 0.013 0.234 ± 0.010

have been compared with the histograms obtained from an
aesthetic predefined image to guide the evolution.

Three different fitness functions using color histogram have
been tested and added to OSGiLiath as services: difference
between the HSV and RGB histograms, and an average dif-
ference of the two histograms at the same time. Table 4
shows the attained results. Experiments show that better
results in terms of similarity are obtained using only the
HSV comparison, where the average value is higher (due to
the noisy information provided by the RGB). This is a basic
image metric, only used by purposes of proof-of-concept and
more complex measurements will be studied in future works.

6. CONCLUSIONS
Service Oriented Computing is a new trend where com-

putational resources cooperate in an automatic way without
taking into account programming language or operating sys-
tem. Also, other trends, such as Cloud Computing are pro-
viding a massively amount of heterogeneous computational
devices. This has been the motivation to develop SOA-EA
and OSGiLiath.

The first applications have been a preliminary study about
adapting the population size of an EA to computational
power of different nodes in a heterogeneous cluster. Re-
sults show that adapting the population size decreases the
execution time significantly in heterogeneous clusters, while
changing this parameter in homogeneous clusters not always
performs better. This is a promising start for adapting EAs
to the computational power of each execution node.

As future work a scalability study will be performed, with
more computational nodes and larger problem instances.
Moreover, other parameters such as migration rate or crossover
probability will be adapted to the execution nodes. This
studies will lead to automatic adaptation during runtime,
with different nodes entering or exiting in the topology dur-
ing the algorithm execution or adapting to the current load
of the system.

Finally, new experiments in the field of Evolutionary Art
will be performed.

The project development is explained and also avaible for
download and modification under a LGPL V3 License at
http://www.osgiliath.org

1665

Table 2: Results for the MMDP problem.

Configuration Max. generations Total generations Time (ms)
HoSi/HeHa 146401,48 ± 65699,69 380967,25 ± 168568,84 136914,03 ± 60028,48
HeSi/HeHa 96051,5 ± 45110,90 289282,3 ± 135038,10 109875,76 ± 49185,51

HoSi/HoHa 107334,46 ± 78167,19 393119,86 ± 241835,27 237759,43 ± 178709,86
HeSi/HoHa 149732,6 ± 81983,74 438171,16 ± 240169,19 245776,93 ± 134715,52

Table 3: Results for the OneMax problem.

Configuration Max. generations Total generations Time (ms)
HoSi/HeHa 4739,41± 305,32 12081,51± 776,35 72152,32± 4994,71
HeSi/HeHa 3438,03 ± 149,47 11277,33± 471,77 61870,2 ± 2518,74

HoSi/HoHa 3133,36± 101,70 12347,83± 394,99 62105,03± 1964,75
HeSi/HoHa 13897,86± 625,27 20725,63± 929,43 56120,53± 2491,92

This work has been supported in part by FPU research
grant AP2009-2942 and projects EvOrq (P08-TIC-03903),
UGR PR-PP2011-5, project 83 of Campus CEI BioTIC and
TIN2011-28627-C04-02.

8. REFERENCES

[1] E. Alba and G. Luque. Evaluation of parallel
metaheuristics. In Parallel Problem Solving from
Nature (PPSN), volume 4193 of Lecture Notes in
Computer Science, pages 9–14, 2006.

[2] E. Alba, A. J. Nebro, and J. M. Troya. Heterogeneous
computing and parallel genetic algorithms. Journal of
Parallel and Distributed Computing, 62(9):1362 –
1385, 2002.

[3] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and
I. Brandic. Cloud computing and emerging it
platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Gener. Comput.
Syst., 25:599–616, June 2009.

[4] D. W. Corne and P. J. Bentley. Creative evolutionary
systems. Morgan Kaufmann, 2001.

[5] S. J. Cox, M. J. Fairman, G. Xue, J. L. Wason, and
A. J. Keane. The grid: Computational and data
resource sharing in engineering optimisation and
design search. In 30th International Workshops on
Parallel Processing (ICPP 2001 Workshops), 3-7
September 2001, Valencia, Spain, pages 207–212.
IEEE Computer Society, 2001.

[6] I. Foster. Service-oriented science. Science,
308(5723):814, 2005.

[7] C. Gagné and M. Parizeau. Genericity in evolutionary
computation software tools: Principles and case-study.
International Journal on Artificial Intelligence Tools,
15(2):173, 2006.

[8] P. Garćıa-Sánchez, J. González, P.A. Castillo, M.G.
Arenas, and J.J. Merelo-Guervós. Service oriented
evolutionary algorithms. Soft Computing, pages 1–17,
2013. In press.

[9] D.E. Goldberg, K. Deb, and J. Horn. Massive
multimodality, deception, and genetic algorithms. In
R. Männer and B. Manderick, editors, Parallel
Problem Solving from Nature, 2, pages 37–48,
Amsterdam, 1992. Elsevier Science Publishers, B. V.

[10] Y. Gong and A. Fukunaga. Distributed island-model
genetic algorithms using heterogeneous parameter
settings. In Proceedings of the IEEE Congress on
Evolutionary Computation, CEC 2011, New Orleans,
LA, USA, 5-8 June, 2011, pages 820–827. IEEE, 2011.

[11] Y. Gong, M. Nakamura, and S. Tamaki. Parallel
genetic algorithms on line topology of heterogeneous
computing resources. In Proceedings of the 2005
conference on Genetic and evolutionary computation,
GECCO ’05, pages 1447–1454, New York, NY, USA,
2005. ACM.

[12] OSGi Alliance. OSGi service platform release 4.2,
2010. Available at:
http://www.osgi.org/Release4/Download.

[13] J. Parejo, A. Ruiz-Cortés, S. Lozano, and
P. Fernandez. Metaheuristic optimization frameworks:
a survey and benchmarking. Soft Computing - A
Fusion of Foundations, Methodologies and
Applications, 16:527–561, 2012.
10.1007/s00500-011-0754-8.

[14] C. Reas and B. Fry. Processing: A Programming
Handbook for Visual Designers and Artists. Working
paper series (National Bureau of Economic Research).
MIT Press, 2007.

[15] C. Salto and E. Alba. Designing heterogeneous
distributed gas by efficiently self-adapting the
migration period. Applied Intelligence, 36:800–808,
2012.

[16] J.D. Schaffer and L.J. Eshelman. On Crossover as an
Evolutionary Viable Strategy. In R.K. Belew and L.B.
Booker, editors, Proceedings of the 4th International
Conference on Genetic Algorithms, pages 61–68.
Morgan Kaufmann, 1991.

7. ACKNOWLEDGMENTS

1666

