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ABSTRACT
This paper suggests a genetic participatory learning algo-
rithm and illustates its use in fuzzy systems modeling. The
algorithm emerges from the concepts of participatory learn-
ing, selective transfer, and differential evolution. In genetic
participatory learning the current population plays an im-
portant role in shaping evolution of the population individ-
uals themselves. Selection uses compatibility between best
and ramdonly chosen individuals. Exchange of informa-
tion between individuals employes a recombination operator
built from a selective transfer mechanism, whereas mutation
proceeds analogously as in differential evolution. Recombi-
nation and mutation operations are affected by compatibil-
ity between individuals. An application example regarding
fuzzy modeling of an electric maintenance problem using
actual data serves to illustrate the effectveness of the algo-
rithm, and to compare with alternative participatory and
genetic fuzzy systems approaches. Computational results
suggest that genetic participatory learning produces accu-
rate and competitive models when compared with current
state of the art approaches.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Algorithms

Keywords
Evolutionary Participatory Learning, Selective Transfer, Dif-
ferential Evolution, Fuzzy Modeling
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1. INTRODUCTION
The development of algorithms for problem solving has

been a major subject in applied mathematics, computer sci-
ence and engineering. Evolutionary algorithms provide a
path to solve complex problems in many areas, especially
in optimization and system modeling. They are robust,
do not need too much specialization to specific classes of
problems, and deliver good solutions within reasonable time
[1]. Indeed, gentic algorithms are amongst the most widely
used approaches for automated decision making and prob-
lem solving [2]. Genetic algorithms rely on the idea that
environment causes natural selection in a population of in-
dividuals, and survival of the fittest induced by natural se-
lection improves population fitnesss.

However, in the real world survival of the fittest saga,
there appears to be additional processes going on. First, be-
sides being determined by some external requirement, fitness
is always strongly affected by the population itself [3]. The
population influences the reproductive suitability of indi-
viduals through interaction, compatibility, and immitation.
There is also a sort of fitness function learning because the
combination of external requirements with interaction, com-
patibility, and immitation produces the fitness function it-
self. One method to capture the role that the population
plays in evolution is participatory learning (PL). Interaction
and immitation can be grasped by recombinaton through se-
lective transfer. Selective transfer is a one way transfer of
substrings mechanism.

Genetic algorithms (GA) and differential evolution (DE)
are important evolutionary approaches. Generally speak-
ing, while DE maintains a population of individuals using
mutation, recombination and selection steps working in se-
quence during generations, GA reverses these steps. Both
keep whichever individual whose fitness is best.

Recently [4] introduced an evolutionary participatory learn-
ing algorithm (DPLAT) which uses a mutation scheme de-
veloped from the arousal mechanism of participatory learn-
ing, in addition to selective transfer and compatitility in-
dexes between individuals. The processing steps proceed
similarly as in differential evolution algorithms. This pa-
per suggests a new class of genetic participatory learning
algorithm (GPLAT) based uppon selective transfer, com-
patibility indexes and mutation as in DPLAT, but the pro-
cessing sequence is as in a GA. The performance of the al-
gorithm is evaluated using actual data to develop a fuzzy
model for an electric maintenance instance (ELE) reported
in [5]. The GPLAT is compared against a differential par-
ticipatory learning algorithm (DPLAX), a genetic participa-GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
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tory learning algorithm (GPLAX), both with arithmetical-
like crossover instead of selective transfer, the DPLAT of [6],
and with a state of the art genetic fuzzy system approach
[5].

This paper is organized as follows. The next section briefly
overviews genetic participatory learning and its participa-
tory operators, namely, participatory selection, participa-
tory selective transfer, and mutation. Section 3 sumarizes
the use of GPLAT to develop a fuzzy rule-based model for
the electrical maintenance data ELE. The results provided
by GPLAT are compared against a state of the art approach
[5], the evolutionary participatory algorithms DPLAT [4],
GPLAX and DPLAX [6]. Section 4 concludes the paper
and summarizes issues for further investigation.

2. GENETIC PARTICIPATORY LEARNING
In this section, we briefly review the participatory learning

paradigm and explain the participatory selection, selective
transfer, and mutation operators.

2.1 Participatory Learning
The concept of participatory learning explored in this pa-

per was itroduced in [7]. The basic idea of PL is that the
process of learning depends on what is already known or
believed. A key point of the idea of PL is that an observa-
tion has the greatest impact in causing learning or knowl-
edge revision when it is compatible with the current knowl-
edge. Participatory learning emphasizes that the current
knowledge participates in the process of learning about it-
self. Thus, a fundamental part of this learning scheme is the
compatibility between observation and knowledge. The ba-
sic scheme of participatory learning is depicted in Figure 1.
What is essential is to note that the current knowledge, in
addition to give via the lower loop, a standard against which
the observations are compared, directly affects the process
used for learning via the upper loop. The upper loop in-
dicates that the current knowledge affects how the system
accepts and processes input information. In PL an arousal
mechanism monitors the performance of the learning process
by observing the compatibility of the current knowledge with
the observations. This information is then feedback via the
upper arousal loop in terms of an arousal index that subse-
quently affects the learning process. A formal mechanism to

Figure 1: Participatory learning approach.

update knowledge is a smoothing like algorithm:

v(t+ 1) = v(t) + αρt(d(t)− v(t)) (1)

where v(t+1), v(t) and d(t) are n-dimensional vectors corre-
sponding to the current knowledge, previous knowledge, and
current observation, respectively. The parameter α ∈ [0, 1]
is the basic learning rate and ρt ∈ [0, 1] is a compatibil-
ity index which measures the compatibility degree between
knowledge and observation at step t.

A device to monitor compatibility index values is an arousal
index. Expression (1) can be rewritten to incorporate the
arousal index as follows:

v(t+ 1) = v(t) + αρ1−at
t (d(t)− v(t)) (2)

where a ∈ [0, 1] is the arousal index.

One way to compute the compatibility index ρt is as fol-
lows:

ρt = 1− 1

n

n∑
k=1

|dk(t)− vk(t)|. (3)

It is interesting to note that in participatory learning if
ρt = 0, then v(t + 1) = v(t) which means that the current
observation d(t) is completely incompatible with the current
knowledge v(t). This condition implies that the system is
not open to any learning from the current observation. On
the other hand if ρt = 1, then v(t + 1) = d(t) for α = 1.
In this case the observation is in complete agreement with
the current knowledge and thus the system is fully open for
learning. Also, notice that the basic learning rate α is mod-
ulated by the compatibility degree. This helps to attenuate
swings due to values of d which are far from v, which gives
a way to smooth the effect of conflicting observations.

One procedure to obtain the arousal index is the following:

at+1 = at + β((1− ρt+1)− at) (4)

where β ∈ [0, 1] controls the rate of change of arousal. The
higher at, the less confident is the learning system in current
knowledge. The arousal index can be understood as the
complement of the confidence in the knowledge structure
currently held.

The genetic participatory learning algorithm (GPLAT)
exploits the formulation above to develop its operators and
algorithm.

2.2 Selection
Assume a space S = St ∪ St+1 of strings of fixed length

n. Let St ⊂ S denote the old population, and St+1 ⊂ S de-
note the new population. Let s∗ ∈ S be the best individual
from the objective function point of view, and s ∈ St+1 and

s
′
∈ St be two individuals chosen randomly. In GPLAT the

selection process first computes the compatibility degrees

between s and s
′

with s∗ and chooses the one most compat-
ible. More precisely, the compatibility degrees ρs(s, s∗) and

ρs
′
(s

′
, s∗) as follows:

ρs = 1− 1

n

n∑
k=1

|sk − s∗k|, (5)

and

ρs
′

= 1− 1

n

n∑
k=1

|s
′
k − s∗k|, (6)

and the individual whose compatibility degree is the largest
is selected. In this step it is important to notice that selec-
tion depends on both, the objective function which identifies
s∗, and on ρ, which measures the compatibility degree be-
tween s∗ and the candidate individuals. The purpose of
combining the objective function with compatibility degrees
is to shape the reproductive fitness of individuals. Jointly,
s∗ and ρ, decide which individual is selected. Thus the indi-
viduals themselves are part of the selection procedure. This
a manifestation of the participatory nature of the GPLAT.

2.3 Selective Transfer
In [8] Birchenhall et al. suggested to replace selection and

crossover operators by an operator involving selective trans-
fer. Essentially, selective transfer is a filtered replacement
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of substrings from one string to another, without excluding
the possibility that the entire sequence is copied. Noticeably,
selective transfer is derived from Holland crossover, but it
is based on one-way transfer of strings, not on exchange of
strings, and its behavior is likely to be very different from
the combination of selection and crossover.

GPLAT employes the selective transfer concept as follows.
Assume that an individual pselected is found using the com-
patilibity as described in the Subsection 2.2. Next, ran-
domly choose two positions h ≤ k in the pselected string
and toss a fair coin. If the coin turns head, then the sub-
string from pselected(h) to pselected(k) of pselected is replaced
by the corresponding substring from s∗(h) to s∗(k) of s∗. If
the coin turns tail, then the substring from pselected(1) to
pselected(h − 1) and from pselected(k + 1) to pselected(n) are
replaced by the corresponding substrings of s∗. The new
string formed by the selective transfer process is denoted by
c.

Selective transfer is similar to crossover in standard ge-
netic algorithms, but there are some differences. The most
important one is that selective transfer uses one-way relo-
cation of substrings from the best individual to the individ-
ual selected. This is important because the selective trans-
fer is much more schemata destructive than the standard
crossover. The exploration or exploitation character of the
selective transfer operator depends on both, the values of
h and k, and the nature of the encoding mechanism of the
chromosomes.

2.4 Mutation
There are many ways to perform mutation in evolution-

ary algorithms. For instance, in DE arithmetic combina-
tions of selected individuals produces mutation [9]. More
specifically, mutation in DE produces new individuals pm as
follows:

pm = xm1 + F · (xm2 − xm3) (7)

where random indexes m1,m2,m3 ∈ {1, 2, ...,M} and F >
0 is a real and constant factor during the entire evolution
process, whose variation is proportional to (xm2 − xm3).

In genetic participatory learning, participatory mutation
generates a new individual pm using the compatilibity be-
tween individuals pselected and c, and the arousal index as
follows:

pm = s∗ + ρ1−a(pselected − c) (8)

Notice that the compatibility and arousal indexes control
the extension of the variation of s∗. In this sense, partic-
ipatory mutation is similar to differential evolution muta-
tion. The exploration or exploitation character of mutation
is modulated by compatibility.

The participatory genetic learning algorithm can be sum-
marized as follows.

1. Let objf → f

2. Generate St and St+1 randomly

3. Set a(0)→ 0

4. While t ≤ tmax do
Evaluation:
choose s ∈ St+1 and s

′
∈ St randomly.

evaluate individuals of St and St+1 using objf .

choose the best individual s∗.
Selection:

compute ρs(s, s∗) and ρs
′
(s

′
, s∗).

if ρs ≥ ρs
′

then pselected = s else pselected = s
′
.

Selective Transfer:
choose h, k, h ≤ k, and r ∈ [0, 1] randomly.
if r ≤ 1/2 then c = [s∗(1, 1 : h), pselected(1, h + 1 :
k), s∗(1, k+1 : n)]; else c = [pselected(1, 1 : h), s∗(1, h+
1 : k), pselected(1, k + 1 : n)].
Mutation:
compute ρm = ρ(pselected, c)

compute pm = s∗ + ρ
1−at+1
m (pselected − c).

if objf(pm) better than objf(s∗) then pm → St+1.

5. Return the best individual.

3. COMPUTATIONAL RESULTS
This paper explores GPLAT, evolutionary participatory

learning algorithms, and a genetic fuzzy system to develop
a fuzzy rule-based model using actual data concerning an
electrical maintenance problem. The application considered
in this section uses the embedded genetic fuzzy rule-based
system approach to learn the data base and a simple method
to derive fuzzy rule bases of fuzzy rule-based models. We
compare the performance of the genetic participatory algo-
rithm (GPLAT) with the participatory algorithms DPLAX,
GPLAX [6], and DPLAT [4], and with a state of the art
genetic fuzzy system (GFS) approach of [5]. Essentially, a
GFS is a fuzzy rule-based system together with a learning
procedure based on genetic algorithms. For comparison pur-
poses, we use the same enconding framework and data set
of [5]. In the electric maintenance modeling addressed here,
we assume four (alternatively, two) input variables and one
output variable. The dataset (ELE) contains 1056 samples.

Table 1 shows the average of 12 runs of the DPLAT,
GPLAT, DPLAX and GPLAX. The population size was 61
and evolution stops after 1000 generations. The selection of
2 inputs in the Wang-Mendel rule generation method (WM)
was done as in [5, 10]. The results obtained by the GFS of
[5] are shown in Table 2.

Looking at the results of Tables 1 and 2 we may con-
clude the following. The average mean-squared error (MSE)
achieved by the different models evolved by the DPLAT,
GPLAT, DPLAX and GPLAX were lower than the average
values of the GFS of [5]. The 4 input model envolved by the
DPLAT, GPLAT, DPLAX and GPLAX using WM with dif-
ferent number linguistic labels is more accurate than when
the number of linguistic label are kept fixed. The lowest
value of the MSE is achieved by GPLAX, except for WM(5)
with 5 linguistic labels. Also, the standard deviation of the
MSE of WM with variable number of labels is smaller, ex-
cept for DPLAT and GPLAX.

In the 2 input case, GPLAT using WM performs best
among the DPLAT, DPLAX, GPLAX, FSMOGFS and FS-
MOGFS+TUN from the point of view of the MSE and
standard deviation. Further, the processing time spent by
DPLAX to produce this result was 16, 59 seconds, whereas
FSMOGFS+TUN spent 105, 3 seconds.

4. CONCLUSION
This paper has suggested GPLAT, a class of genetic learn-

ing algorithm based on participatory learning. The main
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Method WM(3) WM(5) WM(7) WM WM
Inputs 4 4 4 4 2
Rules 27 65 103 80 8

DPLAT MSE Time MSE Time MSE Time MSE Time MSE Time
Mean 45648,42 45,21 23363,50 54,83 14006,13 84,03 12267,40 65,16 6438,34 37,45
SD 5106,75 1,11 2460,22 0,54 3054,52 1,35 2533,93 0,63 54,10 1,07

GPLAT MSE Time MSE Time MSE Time MSE Time MSE Time
Mean 47414,33 29,90 24521,58 55,19 15503,70 85,88 13581,03 72,37 6420,73 39,15
SD 6117,38 0,52 3758,45 0,92 4171,06 1,69 3768,39 3,11 52,76 0,64

DPLAX MSE Time MSE Time MSE Time MSE Time MSE Time
Mean 46828,17 31,81 24816,17 56,97 14870,96 84,51 12794,97 67,02 6460,96 16,59
SD 3890,26 0,72 4287,94 0,25 4791,31 1,47 3502,38 1,44 140,97 0,06

GPLAX MSE Time MSE Time MSE Time MSE Time MSE Time
Mean 45014,17 31,57 23769,67 55,58 13251,73 84,01 12058,16 67,84 6434,54 19,09
SD 5821,81 0,67 3421,24 0,51 3140,42 1,40 3153,25 0,90 136,18 0,20

Table 1: Average MSE of Participatory Evolutionary Algorithms for ELE dataset

Method WM(3) WM(5) WM(7) FSMOGFS FSMOGFSe FSMOGFS+TUN FSMOGFSe+TUNe

Input 4 4 4 2 2 2 2
Rules 27 65 103 10 9 9 8
Mean 192241 56135 53092 16018 16153 8803 9665
SD 9658 1498 1955 314 450 739 823

Table 2: Average MSE Values of Different Algorithms for ELE dataset[5]

characterisitc of participatory learning is the role that the
current population plays in shaping evolution. The genetic
participatory learning algorithm uses participatory selective
transfer and selection operators to exchange information be-
tween individuals. Selection, selective transfer and compati-
bility help to improve the performance of learning and allow
trade-offs between the exploration and exploiatation duirng
generations. Mutation uses compatibility and arousal in-
dexes to handle diversity. The approach was evaluated us-
ing actual data to model an electric maintenance problem
and its performance was compared against alternative ap-
proaches. Computational results show that genetic partici-
patory learning algorithms perform better than current state
of the art genetic fuzzy systems approach. Further work
shall test participatory evolutionary approaches with dis-
tinct datasets and applications, report statistical analysis,
and perform theoretical analysis of the algorithms.
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