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ABSTRACT

Evolution has produced a wide variety of organisms that interact
with their physical environment through musculoskeletal systems.
Movements are often aided by passive characteristics of an organ-
ism’s body and the inherent flexibility of muscles. Emulating these
characteristics in a robot can potentially increase performance and
maneuverability, but requires finding effective solutions among an
infinite set of possible morphology and controller combinations.
Evolutionary computation provides a means to explore this large
search space. However, developing simulation models to account
for these material properties presents challenges. In this paper, we
present an overview of the challenges in implementing such an evo-
lutionary approach. We also present preliminary results demon-
strating the effectiveness of our proposed methods.
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1. INTRODUCTION

Musculoskeletal systems enable organisms to express a diverse
range of movements. Individual muscles are capable of performing
a wide variety of tasks, from fine motor control, to explosive move-
ments such as jumping. Even in situations where a high level of
power is required, fluid movements are achieved through complex
coordination controlled by the nervous system. Additionally, sec-
ondary morphological features, such as fish fins or bird feathers,
compliment the movement produced by muscles. In some cases,
these secondary structures are actively controlled, but in others they
are totally passive.

Observation of natural organisms leads to the question: How can
similar features be realized in robots? Many robotic motors pro-
duce movement in a single axis joint, whereas natural organisms
feature muscle groups that work in tandem to produce movement.
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Furthermore, passive material properties such as friction and flex-
ibility, as well as passive joints, assist in locomotion and move-
ments. Their behavior depends on complex interactions with the
environment. Implementing these features in a robot requires new
approaches to the hardware design process and control strategies
necessary to move limbs.

In this paper, we discuss challenges associated with modeling
passive and flexible materials in a digital simulation environment,
as well as our approaches to address them. We demonstrate the
application of evolutionary computation to harness passive proper-
ties in three different types of robots. Evolved solutions are able to
exploit passive features, such as friction and flexibility, to produce
effective gaits.

2. RELATED WORK

Evolutionary computation has been applied successfully in robot
development since the seminal works of Sims [22] and Brooks [2].
Effective solutions have been found to address locomotion [1,5,21]
and control in dynamic environments [7]. Parallels between arti-
ficially evolved robots and biological brains have been especially
successful in the investigation of salamander nervous systems [10,
11], where both swimming and walking gaits were evolved, as well
as mechanisms that allow smooth transitions between gaits.

Flexible robotics, an emerging field accelerated by the advent
of multi-material 3D printing technologies and advances in elec-
troactive polymers [3], has created the need to model components
beyond traditional rigid bodies. So-called soft robots are composed
of flexible materials, and move by expanding and contracting their
bodies [8,9]. Results of such studies have shown that soft robots
are capable of locomotion and deformation, which can be espe-
cially useful in space limited environments encountered during ex-
ploration. However, the emergence of flexible materials and pas-
sive components demands novel, efficient ways of modeling ma-
terial properties in simulation environments in order to apply the
evolutionary process.

3. MODELING AND CONTROL OF PASSIVE

PROPERTIES

Despite the prevalence of passive properties in the natural world,
modeling them in simulation is challenging. Physics simulation en-
vironments typically focus on connecting rigid bodies by joints lo-
cated at the junction between two components. Moreover, the large
number of candidate solutions simulated during the evolutionary
process makes efficiency a critical factor. Without efficient mod-
els, simulating additional properties on top of the physics calcula-
tions can make run times for evolutionary approaches intractable.
Our approach is to approximate flexible material behaviors through



interconnected rigid segments and force calculations resulting in
flexible, passive joints.

Modeling Flexible Materials.

The introduction of flexible materials into a design allows solu-
tions to harness the intrinsic properties of materials themselves. In
previously published work, we focused on the development of flex-
ible feet for a crawling robot [19]; see Figure 1. Rather than use a
powered joint between arm and foot, we implemented a passively
flexible joint using spring and damper constraints. The crawling
robot successfully demonstrated the ability of evolution to exploit
this flexibility, modeled using a spring and damper system and sim-
ulated friction. Specifically, evolved solutions favored a flexible
joint between arm and foot that allowed the robot to maximize its
contact area with the ground during active locomotion. Accord-
ingly, this increased traction reduced slippage of the feet and al-
lowed evolved solutions to travel farther per evaluation cycle than
their inflexible counterparts.

(b)

(@)

Figure 1: Crawling robot with flexible joint connecting arm
and foot [19]. (a) 3D printed prototype. (b) Robot used in evo-
lutionary runs.

We applied lessons learned from the above study to the develop-
ment of a flexible caudal fin for a swimming robot [4]. In addition
to flexibility, we employed a hydrodynamic force approximation
derived in [24] to simulate an aquatic environment. Candidate so-
lutions were simulated using the mathematical model, allowing for
efficient simulations using a rigid body physics simulator. Without
such a model, solutions would need to be evaluated using a more
complex fluid dynamics simulator, which would make the compu-
tation time required infeasible for an evolutionary run. Evolved
solutions tended towards a moderately flexible tail, as shown in
Figure 2. An important aspect of this work was validating the sim-

(b)

Figure 2: Robotic fish with flexible caudal fin [4]. (a) Open
Dynamics Engine [23] simulated model of a flexible caudal fin
using three rigid segments connected by spring and dampers.
(b) Physical robot used for testing 3D printed flexible caudal
fins from evolved results.
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ulation results with a physical prototype based upon the evolved
solutions. Using an Objet Connex 3D printer, multiple fins were
fabricated covering a range of material flexibilities. Although not a
perfect transfer from simulation to reality, results exhibited a sim-
ilar trend in performance, demonstrating that the method used to
model flexibility in simulation was an acceptable approximation.
Applying this approach in simulation allowed us to tune the pa-
rameters in an efficient manner, with an evolutionary run taking
less than 24 hours with current hardware. Similar development us-
ing only physical prototypes is infeasible.

Control Strategies.

Passive properties affect many facets of robotic design, accord-
ingly, controllers must be capable of exploiting them to produce
effective movements. Central pattern generators [15, 16], and more
general artificial neural networks [17], are potentially well suited
to incorporating these properties. Central pattern generator (CPG)
networks are composed of nodes that produce a continuous oscil-
lating signal based on internal node parameters with influence from
external inputs and other connected CPG nodes. When external in-
puts are applied, CPGs are capable of gradually changing their out-
put signal. Smooth transitions are especially important in robots
with flexible or passive properties, since appendages are likely to
deflect or bend along the limb rather than simply at a joint. For ex-
ample, a flexible leg may encounter an object that causes the limb to
bend, interrupting the movement unexpectedly. A controller must
be able to account for this passive flexibility to successfully navi-
gate the obstacle. Artificial neural networks (ANN) can accommo-
date flexible materials and passive properties in a similar manner.
Specifically, ANNs generated using evolutionary methods are able
to add nodes and connections that incorporate external environmen-
tal inputs to produce effective gaits. ANNs are theoretically capa-
ble of exploiting material behaviors to create effective locomotion
strategies. The ability to capture material properties is essential for
any control strategy in robotic systems with flexible and passive
components.

4. EXPERIMENTS

In this section, we present additional data from previously pub-
lished works on the crawling robot seen in Figure 1, as well as
discuss the evolution of control and morphology for an amphibious
robot with passive joints.

Crawling Robot with Flexible Joint.

In our first study on passive properties, we studied a crawling
robot with two arms and feet that were connected by a passively
flexible joint, as shown in Figure 1. Evolution was able to alter
the flexibility of this joint, which in turn affected the contact area
of the feet with the ground. We considered two environments, one
approximating a slippery surface with low friction and a second
environment with a rougher surface. Beyond the results reported
in [19], here we address the effect of two environments on the evo-
lutionary process. These first 50 generations featured a slippery en-
vironment that encouraged increased contact area with the ground
to gain traction, see Figure 3. At generation 50, the second environ-
ment (higher friction), was added to the fitness calculation favoring
individuals with longer arms, effectively discouraging flexibility. In
this experiment, longer arms would mean a greater distance trav-
eled per arm rotation, however, traction would be reduced. This
pressure is visible in the results, as flexibility decreased after gen-
eration 50 due to the competing pressure of a higher friction envi-
ronment on the joint parameters. However, the flexible joint still



maintained a noticeable level of flex at the end of the evolutionary
run, as the first environment encouraged feet that maximized their
contact area with the ground. Results of the run provide insight into
the benefits provided by passive properties. Successful individu-
als exhibited a preference for passive flexibility, rather than having
completely stiff joints.

Flexibility over Generations

0.9+ ———————————:» ————————————————————————————————————
> |
E 0.6+
X
@
[T

0.3+

0.0+

0 25 50 . 75 100
Generation
Cumulative Fitness over Generations

64

4
123
173
Q
S
i

75 100

50 )
Generation

Figure 3: Evolutionary trajectory of flexibility in the crawling
robot study. The top figure presents the average joint flexibil-
ity in a population over evolutionary time. As seen between the
two figures, flexibility increases along with fitness up to gener-
ation 50. The addition of the second environment, denoted by
the vertical line, results in a jump in fitness and a decrease in
flexibility in the population. Shaded regions indicate the area
between the upper and lower confidence intervals taken from
30 replicate runs.

Amphibious Robot with Passive Hinge Joint.
Our next study into passive material properties focused on evolv-
ing the morphology and control of an amphibious robot with a

freely moving hinge between foot and arm; see Figure 4. An overview

of this study along with additional results can be found in [20].
The passive joint on each arm allowed the fin to collapse back-
wards during the forward stroke, providing a means of locomotion
in both terrestrial and aquatic environments. Therefore, a controller
must adapt to handle the behavior of the joint indirectly. Each arm
was oscillated by a servo at the base. Evolved solutions harnessed
the passive joints to produce forward locomotion in both aquatic
and terrestrial environments. Additionally, we found a direct rela-
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(b)

Figure 4: Amphibious robot with passive joint connecting the
arm and flipper [20]. (a) Simulated model used in evolutionary
runs. (b) 3D printed prototype.

tionship between control and morphology in individual solutions,
indicating that evolution was able to identify the inherent charac-
teristics of the passive joint. The controller evolved large sweeping
motions of the arms, providing ample time for the fins to collapse
fully backwards during the recovery stroke, and reach their fully
deployed state during the power stroke; see Figure 5. Shortened
strokes would potentially be harmful for this design, as fins would
not reach their optimal positions, resulting in less distance trav-
eled, the fitness metric in this experiment. A successfully evolved
individual was transferred into a physical prototype, shown in Fig-
ure 4, and demonstrated effective swimming gaits. Unfortunately,
the robot was unable to support itself in a terrestrial environment.
However, this was due to a fabrication error in the motor interface
and not a consequence of the reality gap [12,13].
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Figure 5: The range of motion that evolved over time for the
passive joint robot controllers. The best performing individuals
have large ranges of motion, whereas the population averages
have significantly less range of motion.

5. CONCLUSIONS

Improvements in fabrication methods for flexible materials have
created new areas to explore in bioinspired robotics. Novel forms



of actuation and multi-material 3D printing have paved the way to
create robots that harness both active and passive components to
facilitate multiple behaviors. Of course, challenges have also been
encountered with respect to modeling these passive properties, that
must be addressed in designing simulations. In this paper, we have
outlined some of the challenges faced in modeling these conditions,
as well as presented some of our work investigating these properties
in digital simulation. These models can help to identify and cap-
italize on the interactions between active and passive components
in an evolutionary computation setting. Future work will further
investigate modeling these properties and including them as evolu-
tionary parameters in tasks such as station keeping, which we have
previously studied with rigid component robots [18]. Additionally,
incorporating passive properties into evolution, using algorithms
such as Novelty Search [14] or NSGA-II [6], that allow for multi-
ple objectives to be optimized simultaneously is planned.
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