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ABSTRACT
Indicator based evolutionary algorithms have caught the in-
terest of many researchers for the treatment of multi-objective
optimization problems in the recent past since they deliver
the desired approximation of the solution set and due to
a usually better performance compared to dominance based
algorithms. Nevertheless, these methods still suffer the draw-
back that many function evaluations are required to obtain
a suitable representation of the solution set. The aim of
this study is to present the Directed Search (DS) Method
as local searcher within global indicator based optimization
algorithms. For this, we will present the DS in the context
of hypervolume maximization leading to both a new local
search algorithm and a new memetic algorithm. Further,
we will present first attempts to adapt the DS to a class of
parameter dependent problems.
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1. INTRODUCTION
In many applications one is faced with the problem that

several objectives have to be optimized leading to a multi-
objective optimization problem (MOP). Since the solution set
of a MOP does not consist of a single solution but forms a
(k − 1)-dimensional manifold, where k is the number of ob-
jectives, the numerical treatment of such problems is a chal-
lenging task. Among those algorithms, specialized evolu-
tionary algorithms (evolutionary multi-objective algorithms,
EMOAs) have caught the interest of many researchers in the
recent past [4]. Reasons for this (among others) are that
EMOAs are applicable to a wide range of problems, are of
global nature, and allow to compute a finite size represen-
tation of the Pareto set in one single run of the algorithm.
Among EMOAs there is a recent trend in the design of algo-
rithms that are based on a particular performance indicator.
Reasons for that include the improvement of the numerical
treatment of the problem (e.g., the speed up of the con-
vergence rate) and the fact that such optimal archives (i.e.,
optimal w.r.t. the given indicator) are in certain cases most
appropriate for the related decision making problem.
The goal of this study is to use and adapt the recently devel-
oped Directed Search Method (DS) as local searcher within
indicator based EMOAs. The DS allows to steer the search
into any direction given in objective space which is well-
suited for the problem at hand: Given an indicator, the
MOP is (implicitly) transformed into a single-objective op-
timization problem. Hence, for every point out of the pop-
ulation that is selected for local search there exists an ‘op-
timal’ (i.e., greedy) search direction to locally improve the
indicator value. Note that most performance indicators are
defined in objective space (e.g., the hypervolume indicator
[10] or the averaged Hausdorff distance [7]), and hence, the
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use of the DS comes as a natural choice.
In this paper, we first recall some background (Sec. 2) and
discuss further on how the DS can be used in the context
of hypervolume maximization (Sec. 3). Further, we present
some first results to adapt the DS to the context of pa-
rameter dependent MOPs (Sec. 4). Finally, we draw our
conclusions and give paths for future research in Sec. 5.

2. BACKGROUND
A MOP can be stated as

min
x∈Q

{F (x)}, (1)

where F is given by the vector of the objective functions
F : Q → R

k, F (x) = (f1(x), . . . , fk(x)), and where each
objective is given by fi : Q → R. We say that a vector
x ∈ Q dominates a vector y ∈ Q (x ≺ y) if fi(x) ≤ fi(y)
∀i = 1, . . . , k and fj(x) < fj(y) for a j ∈ {1, . . . , k}. A
vector x is called (Pareto) optimal if there exists no z ∈ Q
such that z ≺ x. The set of Pareto optimal points is called
the Pareto set PQ, and its image F (PQ) the Pareto front.
Recently, the DS has been proposed to allow to steer the
search from a given point into a desired direction d ∈ Rk

in objective space [8]. To be more precise, given a point
x0 ∈ Rn, a search direction ν ∈ Rn is sought such that

lim
t↘0

fi(x0 + tν)− fi(x0)

t
= di, i = 1, . . . , k. (2)

Such a direction vector ν solves the system J(x0)ν = d of
linear equations, where J(x) denotes the Jacobian of F at
x. Since typically k < n, the equation is underdetermined.
Among the solutions of J(x0)ν = d, the one with the least
2-norm can be viewed as the greedy direction for the given
context. It is given by ν+ := J(x)+d, where J(x)+ denotes
the pseudo inverse of J(x). Since there is no restriction on d
the search can be steered in any direction, e.g., toward and
along the Pareto set. See [8] for a Pareto descent method
and a continuation method based on DS. In [5] a gradient
free version of the DS is presented.

3. DS TO MAXIMIZE THE HYPERVOLUME
First we address the problem to maximize the hypervol-

ume using DS (see [9] for a more detailed study). For this,
we first divide the objective space into three regions:

1. Region I The objective vector F (x) is ‘far away’ from
F (PQ). A greedy search toward the rough location of
F (PQ) is desired.

2. Region II F (x) is ‘in between’, i.e., neither far away
nor near to F (PQ). A descent direction has to be se-
lected such that a movement in that direction maxi-
mizes the hypervolume.

3. Region III F (x) is ‘near’ to F (PQ). A movement
toward F (PQ) will lead to ’non-significant’ improve-
ments of the hypervolume. Instead, a search along
F (PQ) will be performed.

The region assignment for a given candidate solution x can
be done by considering the size of the descent cone which is
in turn related to the angle between the ’objectives’ gradi-
ents. Next we describe the use of DS for bi-objective prob-
lems in each region.
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Figure 1: Result of the HVDS (left) and a hyper-
volume hill climber (right) on a convex MOP.

SMS-EMOA SMS-EMOA-HVDS
Average Deviation Average Deviation

Convex∗ 2003.867 68.956 2161.668 18.039
Dent 17.234 0.031 17.245 0.023

ZDT1∗ 105.015 0.948 109.532 0.005
ZDT2∗ 97.592 2.965 109.230 0.040
ZDT3∗ 113.771 1.857 116.097 1.948
ZDT4 76.536 13.485 76.030 15.955

Table 1: Numerical results of SMS-EMOA with and
without HVDS as local searcher (using a budget of
2500 function evaluations). Average over 20 runs.

Using DS it can be shown that for points x far away from PQ

large improvements in image space using one iteration step
can only be obtained for dI = (−1,−|µ|)T , where ||∇f2(x)||2 =
|µ|||∇f1(x)||2, which represents a movement toward the Pareto
front. Hence, we suggest to use DS using direction dI .
For x in Region II, the task is to find a search direction
dII <p 0 such that a movement in that direction maximizes
the hypervolume. It can be shown for one element archives
the greedy solution is given by dII = F (x)−R. For general
archives, R is a given reference point for the extreme points
and the nadir point of the two neighboring solutions in case
F (x) is located between two archive objective vectors.
In case x is already near to the Pareto front, a replacement
of x by a dominating solution will increase the hypervolume
since this indicator is Pareto compliant, however, only by
a non-significant value. Instead, we propose to perform a
search along the Pareto front. Using DS, this can be done
by linearizing the Pareto front at F (x) as done for the DS
continuation [8]. Then, assuming (locally) a linear front, a
one-dimensional optimization problem has to be solved in
order to maximize the hypervolume. If the resulting step
size is smaller than a given threshold, the algorithm can be
stopped since no more improvements can be expected.
The resulting algorithm, HVDS (Hypervolume based Di-
rected Search), can then constructed based on the above
guidelines and then either be used as a standalone algorithm
or as a local searcher within an EMOA. Figure 1 shows one
result of the HVDS as standalone algorithm on a MOP with
a convex Pareto front. For comparison, a simple hyper-
volume based hill climber has been used. Table 1 shows
experimental results of SMS-EMOA [2] with and without
HVDS on six benchmark models. Here, the hybrid wins sig-
nificantly in 4 out of 6 models and loses in 1. Statistically
significant differences due to the Wilcoxon-Rank-Sum Test
with α = 0.05 are marked with (*).
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4. DS FOR PARAMETER DEPENDENT MOPS
In the sequel we consider the following parameter depen-

dent multi-objective problems (PMOPs):

min
x∈Q

{Fλ(x)}, (3)

where F is as in (1) and λ is an external parameter1 within a
given set Λ ⊂ Rl. Note that for a fixed value λ problem (3)
reads as the original problem (1). We denote by PQ,Λ the
family of Pareto sets and by F (PQ,Λ) the respective family
of Pareto fronts.
To apply DS to the new problem, we have to use a trick:
We will formally treat λ as ‘normal’ parameter leading to
the mapping F : Rn+l → Rk+l with

F (x, λ) =


f1(x, λ)

...
fk(x, λ)

λ

 =:

 g1(x, λ)
...

gk+l(x, λ)

 . (4)

Now we can adapt DS to the current context: Given a
point (x, λ) ∈ Rn+l in parameter space and a vector d =
(df , dλ)

T ∈ Rk+l in objective space, the task is to find a
direction ν = (νf , νλ) ∈ Rn+l such that ∀i ∈ {1, . . . , k + l}:

lim
t↘0

gi((x, λ) + tν)− gi(x, λ)

t
= 〈∇gi(x, λ), ν〉 = di. (5)

In matrix vector notation, Equation (5) can be written as(
Jx Jλ

0 Il

)(
νf
νλ

)
=

(
df
dλ

)
, (6)

where Jx (Jλ) denotes the derivative of F with respect to
x(λ) at (x, λ) and Il the l× l identity matrix. Using (6), we
are now in the position to steer the search in any direction
given in objective space where we can separate between ‘f-
space’ (i.e., the objective space for a particular value of λ
given by df ) and ‘λ-space’. For instance, the greedy solution
ν+ to perform a search in d-direction is given by

ν+(x, d) = J+d =

(
J+
x −J+

x Jλ

0 Il

)(
df
dλ

)
=

(
J+
x df − J+

x Jλdλ
dλ

)
(7)

DS Descent Method.
Assume we are given a point (x0, λ0) and the task is to

steer the search into direction d = (df , dλ), where all en-
tries of df are negative (i.e., a ‘descent direction’ in f-space).
Then a movement in that direction is related to the numer-
ical solution of the following initial value problem:

z(0) = (x0, λ0)
T ∈ Rn+l

ż(t) = ν+(x(t), d)
(λ-DS(x0, λ0, d))

We define the critical point of the solution γ of λ-DS(x0, λ0, d)
as the first point where no movement in d-direction can be
performed (which does not have to be the end point of γ).
Such points are always the boundary points of problem (3)
but do not have to be KKT points of problem (1) for the
critical value λ∗. The following discussion shows the rela-
tion to the normal boundary intersection (NBI, [3]) which is

1As an example, consider bi-objective problem ‘F=(speed,
safety)’ of a vehicle where the side wind has to be considered
within a certain range.

a well-known scalarization method for MOPs.
The NBI subproblem for problem (3) can be written as:

max
x,λ,t

t

s.t. F (x, λ) = F (x0, λ0) + td

x ∈ Q, λ ∈ Λ

(NBI(x0, λ0, d))

Using (NBI(x0, λ0, d)), we can state the following result (we
omit here the all the proofs due to space limitations).

Proposition 1. Let z∗ = (x∗, λ∗) be the critical point of
(λ-DS(x0, λ0, d)), then it is a local solution of (NBI(x0, λ0, d)).

Hence, following γ up to the critical point leads by the above
result to the maximal movement in d-direction. It remains
to detect z∗. Since it is a boundary point, it follows that the
matrix (Jx Jλ) ∈ Rk×(n+l) has to have rank k−1 which can
easily be checked numerically by looking at the condition
number of the matrix during the numerical integration of
(λ-DS(x0, λ0, d)).

DS Continuation Method.
Next, it is desirable to use DS to move along the set of

interest PQ,Λ. In [8], this is realized by performing a move
in direction d that points along the linearized Pareto front.
This is also possible for PMOPs due to the following result.
Hereby, I(A) denotes the interior of a set A.

Proposition 2. Let (x, λ) ∈ I(Q) × Λ and x be a KKT
point of Fλ with weight vector α (i.e., αi ≥ 0, i = 1, . . . , k,∑k

i=i αi = 1 and
∑k

i=1 ∇fi(x, λ) = 0). Then

η = (α,−Jλ
Tα)T , (8)

is orthogonal to the linearization of F (PQ,Λ) at Fλ(x).

Hence, using (8), one can perform a movement along PQ,Λ

as for the original DS. Since a movement in f-space is ana-
log to the one for static MOPs, we concentrate here on
the case that we are given a KKT point for a fixed value
of λ and aim for a movement along λ-space (i.e., orthogo-
nal to the Pareto set of Fλ). In particular, we suggest to
use the following predictor-corrector (PC) method: In the
predictor step, compute the predictor direction dpred and
perform a step in that direction using DS. This direction
is given by dpred = (α, dλ)

T where dλ solves the equation
αTJλdλ = µ||α||22. In a next step, this point can be pro-
jected back to PQ,Λ via DS using the corrector direction
dcorr = (−α, 0), that is, df = −α (orthogonal projection to

the Pareto front of Fλ̃, where λ̃ is the new value in Λ) and
dλ = 0 (no changes in λ-space allowed).
As an example, we consider the PMOP S5 proposed in [6]
where Q is 2-dimensional and Λ is one-dimensional. Figure
2 shows the sets PQ,Λ and its image together with numer-
ical result of the novel PC method where the process has
been started with a Pareto optimal solution x0 for the value
λ0 = −1. Note that the above method does not require
any 2nd gradient information which is the case for other PC
methods. To solve the above problem, one can e.g. apply
classical continuation methods (e.g., [1]) on the zero finding
problem

F̃ (x, λ) =
∑k

i=1
αi∇xfi(x, λ) = 0. (9)

Using the continuation method on (9) a result very similar
to the one in Figure 2 can be obtained, however, with a
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Figure 2: Continuation method through λ-space us-
ing λ-DS.

Table 2: Comparison of the cost of classical contin-
uation and the DS approach to solve the problem
shown in Figure 2.

Approach Function Jacobian Hessian
Continuation 87 216 87
DS 255 11 0

much higher effort. Table 2 shows the cost of the methods
apparently, the DS approach has a much lower overall cost.

Gradient Free DS for PMOPs.
One possible drawback of the DS is that it requires gra-

dient information. The following result, however, shows a
possible remedy. If neighboring solutions are at hand (which
is typically the case for EMOAs), ν can be computed for free
in terms of additional function evaluations.
Define the matrix F(x, λ) ∈ R(k+l)×r as follows

F(x, λ) := (〈∇gi(x, λ), νj〉) i = 1, . . . , k + l
j = 1, . . . , r

. (10)

Hence, every entry mij of F is defined by the directional
derivative of objective gi in direction νj . The following result
is central for the gradient free computation of ν.

Proposition 3. Let (x, λ) ∈ Rk+l, ν1, . . . , νr ∈ Rk+l be
linear independent and w ∈ Rr such that ν :=

∑r
i=1 wiνi.

Then F(x, λ)w = J(x, λ)v.

Hence, the gradient free DS can be realized as follows: Given
a point (x0, λ0) where the local search has to be performed
as well as r further test points (xi, λi), i = 1, . . . , r, one can
first approximate the entries of F via

mij = 〈∇gi(x, λ), νj〉 =
gi(xi, λj)− gi(x0, λ0)

‖(xj , λj)− (x0, λ0)‖2
(11)

Then, ν can be computed by solving

F(x, λ)w = d, (12)

and setting

ν :=
∑r

i=1
wiνi. (13)

It is important to note that only r = k + l test points
are needed in order to find a direction ν that solves (12).
In contrast, a total of (n + l) ∗ k function evaluations are
needed when approximating the Jacobian of F using finite
differences. Thus, we can say that if r > k + l test points
are available in the vicinity of (x0, λ0), the search direction
comes for free.

5. CONCLUSIONS AND FUTURE WORK
Here we have considered the DS as local searcher within

EMOAs. We conjecture that DS is in particular benefi-
cial for indicator based algorithms since for such problems
greedy directions exist that are defined in objective space
which makes DS a natural choice. We have applied the DS
in the context of hypervolume maximization and have made
a first attempt to adjust it to the context of PMOPs. There
are many interesting aspects for future work. Though the
first results are promising, further tests have to be performed
and design parameters to be optimized. Further, other in-
dicators than hypervolume have to be considered.
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