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ABSTRACT

We study the frequently observed phenomenon of stagna-
tion in the context of particle swarm optimization (PSO).
We show that in certain situations the particle swarm is
likely to move almost parallel to one of the axes, which may
cause stagnation. We provide an experimentally supported
explanation in terms of a potential of the swarm and are
therefore able to adapt the PSO algorithm slightly such that
this weakness can be avoided.
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1. INTRODUCTION
Particle swarm optimization (PSO) is a widely used nature-

inspired meta-heuristic for solving continuous optimization
problems. However, when running the PSO algorithm, one
encounters the phenomenon of so-called stagnation, which
in our context means, the whole swarm starts to converge
to a solution that is not (even a local) optimum. The goal
of this work is to point out possible reasons why the swarm
stagnates at these non-optimal points. For this, we apply
the newly defined potential of a swarm [2]. The total poten-
tial has a portion for every dimension of the search space,
and it drops when the swarm approaches the point of con-
vergence. As it turns out experimentally, the swarm is very
likely to come into “unbalanced” states, i. e., almost all po-
tential belongs to one axis. Therefore, the swarm becomes
blind for improvements still possible in any other direction.
Finally, we show how in the light of the potential and these
observations, a slightly adapted PSO rebalances the poten-
tial.
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2. DEFINITIONS

Definition 1 (Classical PSO Algorithm) A swarm S of
N particles moves through the D-dimensional search space
R

D. Each particle n consists of a position Xn ∈ R
D, a ve-

locity V n ∈ R
D and a local attractor Ln ∈ R

D, storing the
best position particle n has visited so far. Additionally, the
swarm shares information via the global attractor G ∈ R

D,
describing the best point any particle has visited so far.

The actual movement of the swarm is governed by the fol-
lowing update equations where χ, c1 and c2 are some positive
constants to be fixed later and r and s are drawn u. a. r. from
[0, 1]D.

V
n := χ·V n + c1 ·r ⊙ (Ln −X

n) + c2 ·s⊙ (G−X
n) (1)

X
n := X

n + V
n (2)

Now we define a swarm’s potential measuring how close it
is to convergence, i. e., we describe a measure for its move-
ment. A swarm with high potential should be more likely to
reach search points far away from the current global attrac-
tor, while the potential of a converging swarm approaches
0. These considerations lead to the following definition [2]:

Definition 2 (Potential) For d ∈ {1, . . . , D}, the poten-

tial of swarm S in dimension d is Φd with Φd :=
∑

N

n=1
(|V n

d |
+ |Gd −Xn

d |) the total potential of S is Φ = (Φ1, . . . ,ΦD).

The current total potential of a swarm has a portion in
every dimension. Between two different dimensions, the po-
tential may differ much, and “moving” potential from one
dimension to another is not possible. On the other hand,
along the same dimension the particles influence each other
and can transfer potential from one to the other. This is the
reason why there is no potential of individual particles.

3. STAGNATION
Assume that the fitness function is (on some area) mono-

tone in every dimension. One of our main observations is
that in such a situation the swarm tends to pick one dimen-
sion and to favor it over all the others. As a consequence,
the movement of the swarm becomes more and more paral-
lel to one of the axes. Similarly, Spears et al. [3] point out
that particles tend to gather close to the axes in the case of
rotation invariant fitness functions.

We use the fitness-function f(~x) = −
∑

D

i=1
xi which is

monotonically decreasing in every dimension and set D to
10. Initially, we distribute the particles randomly over [−100;
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100]D and the velocities over [−50; 50]D , and let the swarm
make 500 iterations. We set χ = 0.729, c1 = c2 = 1.49 (as
recommended in [1]) and N = 10. After each iteration, we
calculate the potential for each dimension. We make 1000
runs and after each run, the dimensions are renamed accord-
ing to the final value of Φ, i. e., we switch the numbers of
the dimensions such that after the last iteration dimension
1 always has the highest potential, dimension 2 the second
highest and so on.

We calculate the mean of the potentials over the 1000 runs
for each of the sorted dimensions. The results are stated in
Fig. 1. One can see that the dimension with the greatest
potential has a value far higher than the others, while the
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Figure 1: Growth of po-
tential when processing
f(~x) = −

∑

D

i=1
xi

other dimensions do not show
such a significant difference among
each other. An explanation for
this behavior is the following:
Assume that at some time, one
dimension d0 has more poten-
tial than the others. Further as-
sume that the difference is great
enough such that for some num-
ber of steps the particle with
the largest value in dimension d0
is the one that determines the
global attractor. In [2], a swarm
in this situation is called “run-
ning”. Since randomness is in-
volved and this situation has a
positive probability to occur, it will actually occur after
sufficiently many iterations. Then, each update of the
global attractor increases the potential in d0 considerably
because it increases the distance of every single particle to
the global attractor except for the one particle that up-
dated it. In any other dimension d 6= d0, the situation
is different. Here, the decision which particle updates the
global attractor is stochastically independent of the value
xd in dimension d. In other words: If one considers only
dimension d, the global attractor is chosen uniformly at
random from the set of all particles. As a consequence,
after some iterations, the d0’th coordinate of the velocity
becomes positive for every particle, so the attraction to-
wards the global attractor always goes into the same di-
rection as the velocity, while in the remaining dimensions,
the velocities may as well point away from the global at-
tractor, meaning that the particles will be slowed down
by the force of attraction. This situation is prototypi-
cally depicted in Fig. 2. That implies that the balanced
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Figure 2: Particles run-
ning in direction d0.

situation is not stable in a sense
that after the imbalance has
reached a certain critical value,
it will grow boundlessly.

If at some point no more
improvements can be made in
dimension d0, this dimension
still has the far highest poten-
tial and an improvement of the
global attractor is still possi-
ble, but it is very unlikely and
between two updates are many
steps without an update. The
reason is that any improvement in some of the remaining
dimensions is voided by the much larger worsening in di-

mension d0. Hence, the attractors stay constant for long
times between two updates and so the swarm tends to con-
verge and therefore looses potential. As long as the global
attractor stays constant, the situation is symmetric in every
dimension. That means after the same time the potential
of every dimension is decreased by approximately the same
factor, so dimension d0 has still far more potential than any
other dimension and the swarm stays blind for possible im-
provements in dimensions other than d0.

4. MODIFIED PSO
A small and simple modification of the PSO algorithm

avoids the problem described in the previous section by en-
abling the swarm to rebalance the potentials of the different
dimensions. When the swarm tends to converge, we replace
the usual velocity update by a random choice of the new
velocity out of some small but constant-sized interval.

Definition 3 (Modified PSO) For some arbitrarily small
but fixed δ > 0, we define the modified PSO via the same
equations as the classic PSO in Def. 1, only modifying the
velocity update in (1) to

V
n

d :=



























(2r − 1) · δ,

if ∀ d′ ∈ {1, ..., D} : |V n

d′
|+ |Gd′ −Xn

d′
| < δ,

χ · V n

d + c1 · r · (L
n

d −Xn

d ) + c2 · s · (Gd −Xn

d ),

otherwise.

Whenever the first case applies, we call the step forced.
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Figure 3: Behavior of
the modified PSO on
the sphere function

To show that the modification
does not fully take over, we plotted
the forced points with δ = 10−7 and
the 2-dimensional sphere function
as objective function in Fig. 3. One
sees, the particles get forced near
(−2 · 10−5, 0) but their movement
does not stay forced. Instead, the
swarm becomes running again until
the particles approach the optimum
at (0, 0). This implies that for suffi-
ciently smooth functions, the mod-
ification does not take over, replac-
ing the PSO by some random search
routine. Instead, the modification
just helps to overcome “corners.” As soon as there is a di-
rection parallel to an axis with decreasing function value, the
swarm becomes “running” again and the unmodified move-
ment equations apply.
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