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ABSTRACT 

   Evolutionary algorithms often suffer from premature 

convergence when dealing with complex multi-modal function 

optimization problems as the fitness landscape may contain 

numerous local optima. To avoid premature convergence, 

sufficient amount of genetic diversity within the evolving 

population needs to be preserved. In this paper we investigate the 

impact of two different categories of mutation operators on 

evolutionary programming in an attempt to preserve genetic 

diversity. Participation of the mutation operators on the 

evolutionary process is guided by fitness stagnation and 

localization information of the individuals. A simple experimental 

analysis has been shown to demonstrate the effectiveness of the 

proposed scheme over a test-suite of five classical benchmark 

functions.  

Categories and Subject Descriptors 

G.1.6 [Mathematics of Computing]: Optimization—Global 

Optimization; I.2.8 [Artificial Intelligence]: Problem Solving, 

Control Methods, and Search—Heuristic methods 

General Terms 

Algorithms, Performance, Design 

Keywords 

Evolutionary Programming, Distribution-Based Mutation, 

Differential Mutation, Two-Flag Heuristic 

1. INTRODUCTION 
   Evolutionary programming (EP), one of the major branches of 

Evolutionary algorithms (EAs), was first introduced as a paradigm 

for artificial intelligence. Later, it was extended and successfully 

applied to many global optimization problems. As EP solely relies 

on  mutation for   producing  offspring,  significant  amount  of  

 

 

 

research has been done for designing new mutation operators. For 

example, conventional EP (CEP) [2] based on Gaussian 

distribution, Fast EP (FEP) [3] based on Cauchy distribution for 

mutation. In this paper, we have introduced a mixed mutation 

scheme for EP based on a two-flag heuristic that controls and 

ensures proper participation of mutation operators in a convenient 

way. 

2. METHOD 
   We have proposed an EP algorithm (FLEP) whose diversity is 

controlled by fitness stagnation and localization information of 

the individuals. The main population is divided into two 

subpopulations by a division factor (df) (initially df is set to 0.5 to 

ensure equal subpopulation size). Subpopulation-1 and 

Subpopulation-2 are mutated by two different categories of 

mutation operators whose participations are determined by fitness 

stagnation and localization information. After a certain number of 

generations, successful mutation rates of the mutation operators 

are examined and based on those outcomes, df is updated to 

change the size of Subpopulation-1 or Subpopulation-2. 

   FLEP differs from some state-of-the-art research works [3], [5], 

[4] at several points. First, FLEP uses both distribution based 

(section 2.1) and differential mutation operators (section 2.2) to 

enhance explorative and exploitative search abilities of EP. 

Second, FLEP associates a two-flag heuristic to make decisions 

about the participation of mutation operators. The heuristic 

depends on two attributes: fitness stagnation and localization. 

Fitness optimization denotes at what amount an individual is able 

to optimize its fitness. This attribute is obtained by taking the 

difference between parent fitness and offspring fitness. If for an 

individual the fitness optimization is less than a predefined 

threshold, then fitness stagnation (FS) occurs and the flag for FS 

is set to 1, otherwise 0. Another attribute for the heuristic is 

localization information measured by the Euclidian distance 

between two individuals and observing if it becomes smaller than 

a certain fraction. If localization occurs for an individual, then the 

localization flag is set to 1, otherwise 0. The localization 

methodology implemented in FLEP is to some extent relevant to 

the concept of niche radius [1]. This attribute signals the presence 

of duplicate individuals within the population. Thus fitness 

stagnation and localization attributes together formulate the 

diversity information of the individuals.  

   Table 1 shows the two-flag heuristic along with the decision 

results  for  choosing  desired mutation operator.  Here, Random  
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                  Table 1. Two-flag heuristic decision 

Fitness 

Stagnation 

Localiza-

tion 

Heuristic Decision 

for Distribution- 

based Mutations 

Heuristic Decision 

for Differential 

Mutations 

0 0 Random Random 

0 1 Cauchy LNMO 

1 0 Gaussian GNMO 

1 1 MMO DGMO 

 

means one mutation operator is randomly chosen from 

corresponding category when both the attributes are 0. 

2.1 Distribution Based Mutation Operators 
   It is desirable to adaptively determine the participation of 

several mutation operators at different stages of evolutionary 

process. The proposed FLEP scheme combines and ensures the 

participation of several distribution based mutation operators at 

the time of their best need. Here, distribution based mutation 

operators refer to those mutation operators that employ some 

probability distribution functions to generate the search step size. 

In this paper, we have chosen one heavy tail Cauchy distribution 

based Cauchy mutation [3], one short tail Gaussian distribution 

based Gaussian mutation [2], and mean mutation operator (MMO) 

[6] whose underlying distribution function is the average of 

Gaussian and Cauchy distribution. Details of them can be found 

in [3], [2], and [6] respectively. 

2.2 Differential Mutation Operators 
   FLEP also combines and ensures the participation of differential 

mutation operators as they include neighborhood individuals to 

formulate diversity information. An individual has two distinct 

types of neighbors: Local neighbors that are close to the 

individual considering Euclidean distance and global neighbor 

that has the best fitness value in the entire population. FLEP uses 

local neighbor-based mutation operator (LNMO) and global 

neighbor-based mutation operator (GNMO). Details about them 

can be found in [4]. Another diversity guided mutation operator 

(DGMO) is also used by FLEP details of which can be found in 

[5]. We modified these mutation operators while implementing. 

For simplicity, we have just referred them and their participation 

procedure is depicted in Table 1. Also the logical descriptions for 

their participation are one of the focuses of our future work.    

3. RESULTS AND DISCUSSION 
   We have chosen 2 unimodal and 5 multimodal functions from 

the classical benchmark function set introduced in [3] to present a 

simple experimental study. Table 2 shows the obtained error 

results from the experiments for FLEP in comparison with FEP 

[3]. The error is computed as (Error = f(x) – f(x*)), where f(x) is 

the obtained solution by the algorithm, while the f(x*) is the 

already known global optimum for a particular benchmark 

function. It is apparent from the table that FLEP achieves 

excellent optimization performance for both unimodal and 

multimodal functions. The convergence characteristics for three 

functions have been presented in Figure 2. It is obvious from the 

figure that FLEP converges smoothly without getting stuck at 

local minima until it reaches proximity of global minima. Note 

that, distribution based mutation operators play a significant role 

in achieving excellent optimization. To emphasize their 

importance, we have showed the mean error value obtained by 

FLEP with df=0 (FLEP(df=0) column in Table 2) which  indicates  

size   of  Subpopulation-1  is 0 that  is  all  the 

Table 2. Performance on f4, f6, f8, f10 & f11-f13 with number of 

function evaluations=150000 and dimensions=30(over 25 runs) 

  

individuals are mutated by differential mutation operators. The 

results are not satisfactory as evidenced from Table 2. 

   In summary, the proposed FLEP scheme gets advantage from 

two different categories of mutation operators whose participation 

is controlled by a two-flag heuristic. In future, we are interested to 

explore this idea for a broader class of problems. Also the choice 

of mutation operators and designing new heuristics for them are 

attractive research issues and deserve further investigations. 

   

        Figure 1. Convergence characteristics for f4, f10 & f11.  
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No 

FLEP 

Mean 

Error 

Std. 
FLEP (df=0) 

Mean Error 
Std. 

FEP 

Mean 

Error 

 

Std. 

f4 9.52e-06 2.12e-06 5.62e+00 1.62e+00 3.00e-01   5.00e-01 

f6 0.0 0.0 3.00e+00 0.0 0.0 0.0 

f8 4.00e+00 0.0 21.3333 2.36e+00 1.50e+01 5.26e+01 

f10 4.82e-11 1.67e-10 3.6416 4.70e-01 1.80e-02 2.10e-03 

f11 3.34e-16 0.0 2.71e-16 5.23e-16 1.60e-02 2.20e-02 

f12 7.95e-21 2.17e-18 6.47e+00 1.81e-01 9.20e-06 3.60e-06 

f13 1.84e-20 1.05e-19 1.10e-02 1.72e-11 1.60e-04 7.30e-05 
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