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ABSTRACT
Model Guided Sampling Optimization (MGSO) is a novel
expensive black-box optimization method based on a combi-
nation of ideas from Estimation of Distribution Algorithms
and global optimization methods using Gaussian Processes.
The algorithm is described and its implementation tested on
three benchmark functions as a proof of concept.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, unconstrained optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

General Terms
Algorithms

Keywords
Benchmarking; Black-box optimization; Modeling; Gaussian
Processes

1. INTRODUCTION
When optimizing expensive objective functions with evo-

lutionary algorithms, the cost of the function evaluation
dominates the cost of the whole optimization. Our goal is
therefore to exploit the knowledge of all the previous evalu-
ations. A typical solution in this case is to employ a model
based on the evaluated candidate solutions. We can then ei-
ther replace the objective function with this model for some
evaluations (a practice known as surrogate modeling) or use
the model to guide the selection of candidate solutions. We
are concerned with the latter.

Estimation of Distribution Algorithms (EDA) use such
approach of generating solutions based on a probabilistic
model. An EDA evolves a population of candidate solutions
in generations, each of which starts with solutions evalua-
tion and selection of the promising ones. A model of the
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distribution of the better solutions is then built and new so-
lutions are sampled from it. A comprehensive overview of
EDAs and related methods can be found in [5].

Another approach is using Gaussian Process (GP) model
for optimization fitting a GP regression model to the data
and selecting next candidate solution based on the predictive
distribution given by the GP. The most promising candidate
is added to the dataset and a new model is fitted on the re-
sulting data. A number of candidate selection criteria based
on predictive distribution were examined by Jones et al. [4]
and recently by Hennig and Schuler [3]; the Probability of
Improvement (PoI) is of interest for this work.

We propose a novel optimization method – Model Guided
Sampling Optimization (MGSO) – based on a combination
of the GP optimization and EDAs. One can either view
the novelty as replacing the distribution model in EDA with
a probability of improvement of a GP model fitted to all
known data, or, from the latter point of view, as, instead
of maximizing the PoI to find a single candidate solution,
sampling a set of several candidate solutions proportionally
to the PoI.

2. GAUSSIAN PROCESS REGRESSION
A Gaussian process [6] is an infinite-dimensional proba-

bility density such that each finite-dimensional marginal is
a multivariate Gaussian. The infinite-dimensional realiza-
tions are functions, and the realizations of the marginals are
values of those functions at locations {xi | xi ∈ RD}Ni=1.
A prediction in a testing point then gives a one-dimensional
Gaussian distribution.

A Gaussian process is completely specified by its mean
and covariance functions

f(x) ∼ GP
(
m(x), k(x,x′)

)
m(x) = E [f(x)]

k(x,x′) = E
[
(f(x)−m(x))(f(x′)−m(x′))

]
.

We use a constant mean function and a squared exponen-
tial covariance function with automatic relevance determi-
nation

kSE(x,x′) = σ2
f exp

(
−1

2
(x− x′)>M(x− x′)

)
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Figure 1: Medians (of 15 trials) of distances to op-
timum (f∆) for three benchmark functions

where M = `−2I, ` is a vector of characteristic lengths of the
process in each coordinate dimension and σ2

f is a noise level.

The hyperparameters θ = {`, σ2
f} are fitted by maximizing

the likelihood p(y|X, θ) (y are the observations, X is the
input points matrix).

Since the GP gives a one-dimensional Gaussian distribu-
tion as prediction, we can think of the distribution’s vari-
ance as confidence of the model in its prediction and use it
to guide optimization. Based on both mean and standard
error of the prediction, we can easily get a probability of
improvement [4] over a certain target T as

PoI = Φ

(
T − µ∗
σ∗

)
where µ∗ is mean and σ∗ standard error of the model predic-
tion (both returned by the GP) and Φ is a standard N (0, 1)
cumulative distribution function.

MGSO samples this probability of improvement to get a
next set of candidate solutions.

3. THE MGSO
The basic idea of MGSO is similar to methods proposed

by Jones [4]: Fit a GP model to an initial sample of data and
let the model predictive distribution guide the optimization.
The key difference is that MGSO does not maximize the
PoI used as a criterion to find a single solution candidate to
evaluate. It rather samples the PoI distribution to get a new
population of candidate solutions. Those are then evaluated,
the model is fitted to this augmented dataset and the process
is repeated until a stopping condition is met.

To abstract from the search space scaling, MGSO works in
an internal, linearly transformed coordinate system mapped
to [−1, 1]D and the transformation can be updated during
the optimization. Updating it restricts the learning and
sampling space to a neighborhood of the optimum, which
enables sampling in the situation when the PoI is non-zero
only in a very small region. Finally, when the neighborhood
of the optimum is sufficiently sampled, a local search of the
GP is performed to fine tune the optimum.

Formally, the algorithm proceeds as follows:

1. Generate Ni initial samples {x0} and evaluate them
to get observed values {y0} forming a dataset S0 =
{(x0, y0)}

2. Until a stopping condition is met, for i = 1, 2, . . . re-
peat steps 3–8

3. Build a GP model Mi and fit its hyperparameters θ
to the dataset Si−1

4. Sample N new candidate solutions {xi} based on the
PoI distribution of Mi, optionally with different tar-
gets T as proposed in [4]

5. Evaluate {xi} to get {yi}
6. Augment the dataset obtaining Si = Si−1 ∪ {(xi, yi)}
7. Store the best (x̃, ỹ) ∈ Si : ỹ ≤ yk ∀(xk, yk) ∈ Si
8. If rescale conditions are met, restrict the dataset to

x ∈ ×D
i=1[li, ui] and transform it to [−1, 1]D

9. Return the best (x̃, ỹ)

The bounds li and ui in each coordinate dimension are found
as a bounding box of ten nearest samples from the current
optimum expanded by 10%. The initial number of samples
Ni and population size N are input parameters.

Sampling is performed using the Gibbs method [1] en-
abling us to sample multivariate distributions. In our case,
we sample candidate solutions from the empirical distribu-
tion proportional to the PoI. Samples resulting in ill-condi-
tioned covariance matrices of the GP are rejected.

4. PRELIMINARY RESULTS
As a proof of concept, the method was tested on three

benchmark functions from the BBOB toolbox [2] in 2D.
For each function, 15 optimization runs were performed and
best function values fbest in each generation were recorded.
Figure 1 shows the median of distance to optimum f∆ =
fbest − fopt reached using a given number of function evalu-
ations (limited to 500) for each benchmark.
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