
 Performance Improvement in Genetic Programming
using Modified Crossover and Node Mutation

 Arpit Bhardwaj
Indian Institute of Technology Indore

Indore, India
phd12110102@iiti.ac.in

 Aruna Tiwari
 Indian Institute of Technology Indore

Indore, India
artiwari@iiti.ac.in

ABSTRACT
During the evolution of solutions using Genetic Programming
(GP) there is generally an increase in average tree size without a
corresponding increase in fitness—a phenomenon commonly
referred to as bloat. Bloating increases time to find the best
solution. Sometimes, best solution can never be obtained. In this
paper we are proposing a modified crossover and point mutation
operation in GP algorithm in order to reduce the problem of bloat.
To demonstrate our approach, we have designed a Multiclass
Classifier using GP by taking few benchmark datasets. The results
obtained show that by applying modified crossover together with
modified node mutation reduces the problem of bloat
substantially without compromising the performance.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

General Terms
Performance.

Keywords
Genetic Programming, Bloat, Modified Crossover.

1. INTRODUCTION
Genetic Programming (GP) [1] is an evolutionary algorithm-
based methodology inspired by biological evolution to find
computer programs that perform a user-defined task. Crossover
(sexual recombination) is recognized as the primary genetic
operator for improving program structures in tree-based GP [3]. It
plays vital role in improving GP process. Mutation affects an
individual in the population. It replaces a whole node in the
selected individual, or it can replace just the node's information
[4]. Bloat is a well-known phenomenon in GP [2]. An individual
program in GP could be in any size. Such flexibility in
representation provides more freedom in searching solutions, but
at the same time it causes the bloat problem.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

2. Proposed Work
To control the problem of bloat we have proposed modified

crossover and node mutation operation.

2.1 Modified Node Mutation
In our approach, to control bloat, we use modified node mutation
instead of sub tree mutation. In the modified node mutation
technique, we replace the randomly selected function/terminal
node of the parent with some randomly generated
function/terminal in order to provide some diversity among the
individuals. If the fitness of the children is better than the parent
then only, we transfer the children to the next generation
otherwise, we reject the children and perform the mutation once
again and repeat this process till we get the children which is
better than the parent. If for repeating this process, for all the
nodes we don’t get the better children then, we replace two nodes
rather than one and generate the children. Continue this process
till we get the required result.

Figure 1. Node Mutation

2.2 Modified Crossover
We use the double tournament scheme for selecting

chromosomes for the crossover operation. The two individual

which are selected from the double tournament (say 1C and 2C)

perform the Modified Crossover. Each of 1C and 2C has c

trees 1 2, ,... cT T T . Out of these c trees one is selected on the

basis of fitness, the tree with the highest fitness is chosen to
perform the crossover. The two individual which are selected we

call them 1P and 2P , will generate the four children 1ch , 2ch ,

3ch and 4ch by randomly interchanging the nodes. From these
four generated children two are rejected on the basis of depth and
size, i.e. children with the smaller depth and size are selected

say 1ch , and 3ch are selected because they have smaller size

and depth than 2ch and 4ch . Now we apply elitism, in this we

compare the fitness of 1ch and 3ch with the fitness of 1P

and 2P . If the fitness of child is better than the parent we transfer
the children to the next generation, otherwise repeat this process
till we get the better solution. After checking all the possible
combination if we do not get the better children than we transfer

the 1P and 2P to the next generation rather 1ch and 3ch . In

a

+

b
a

-

b

1721

this way, we can ensure that by using modified crossover
technique we reduce the size and depth limit of the generated
children and also, by applying the elitism we can ensure that we
always transfer the good building block to the next generation.
Thus, we can get the best classifier in less time and this
consequently reduces the problem of bloat.

In Figure 2, we have shown the modified crossover technique,

we had generated the four children 1ch , 2ch , 3ch and 4ch
from the two parents.

 1P 2P

 1ch 2ch

3ch 4ch

Figure 2. Modified Crossover

2.3 Experiments and Results

 For the proposed classifier, datasets are tested using 10-fold-
cross-validation method. Training time and Classification
accuracy is measured for every datasets as given in Table 1 and
Table 2.

 We have compared the outcome of our results with the
conventional crossover and mutation method and with FEDS
crossover and point mutation technique [2] shown in Table 2.

TABLE 1. GP RUN TIME

Data Sets IRIS WBC BUPA

TIME

(hour:min:sec)

0:0:13 0:1:52 0:2:23

TABLE 2. COMPARISON OF CONVENTIONAL CROSSOVER,
MUTAION, FEDS CROSSOVER, NODE MUTATION METHOD

WITH MODIFIED CROSSOVER AND MODIFIED POINT
MUTATION METHOD

NAME
OF
DATAS
ETS

Conventional
Crossover and
Mutation

Method

FEDS crossover
and Node
Mutation Method

Modified
Crossover and
Modified Point
Mutation Method

 Generalization

Accuracy

Generalization

Accuracy

Generalization

Accuracy

 IRIS 81.56% 97.42% 98.12%

WBC 83.64% 85.56% 87.14%

BUPA 64.93% 66.89% 69.32%

We reduced the problem of bloat and improved the results using
modified crossover. In conventional crossover, there is no limit to
the average size of the tree and no restriction according to the
fitness. In our crossover we are applying the limit to the size and
depth of the individuals thus saving the space. We are also
applying the local elitism replacement on the individuals so that
only the best individual can go to the next generation. In our
crossover, we get a smaller tree size because we apply the size
limit on each generated children. The tree with the smaller size
and depth with higher fitness can only proceed to the next
generation. Due to this, the size of the trees in our crossover has
reduced tremendously which helped in controlling bloat and
improved the performance of the classifier designed.

3. CONCLUSION
A GP based classifier is designed based on [2], [4] for further

improvement in the performance. In the proposed work, problem
of code bloat is controlled using modified crossover and node
mutation operations. The same is being tested on various
benchmark datasets using 10-fold-cross-validation technique. It is
observed that our method outperforms the previous bloat control
methods [2]. Our proposed method reduces the size and depth of
the chromosomes. It also improves the training and generalization
accuracy of the classifier as represented in Table 3. Our proposed
method also reduces the training time of the individual. The same
is verified by our results with the experiments conducted.

4. REFERENCES
 [1] J. R. Koza, Genetic Programming: On the Programming of

Computers by Means of Natural Selection. Cambridge, MA:
MIT Press, 1992.

[2] A. Purohit, A.Bhardwaj, A.Tiwari, N.S.Choudhari,
“Removing Code Bloating In Crossover Operation In
Genetic Programming”, IEEE ICRTIT, June 2011.

 [3] P. Nordin, F. Francone, and W. Banzhaf. Explicitly defined
introns and destructive crossover in genetic programming. In
J. P. Rosca, editor, Proceedings of the Workshop on Genetic
Programming: From Theory to Real-World Applications,
pages 6–22, 1995.

+

* e

a b

c

+

d

+

* e

a d

c

+

b

c

+

e

+

* d

a b

1722

