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ABSTRACT
In this paper we describe how the usual sequential and pro-
cedural Evolutionary Algorithm is mapped to a concurrent
and functional framework using the Erlang language. The
design decisions, as well as some early results, are shown.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent
Programming ; D.2.8 [Software Engineering]: Performance
measures; G.1.6 [Mathematics of Computing]: Numeri-
cal Analysis—Optimization

General Terms
Algorithms, Languages, Performance, Measurement

Keywords
Evolutionary Algorithms, Functional Languages, Concur-
rent Languages, Erlang, Algorithm Implementation

1. INTRODUCTION AND STATE OF THE
ART

The Evolutionary Computation (EC) field is focused on
the widespread use of implementation technologies such as
C/C++, Fortran and Java. Getting out of that mainstream
it is not normally seen as a land for scientific improvements.
Erlang is a programming language with a lot of potential, it
supports the functional and concurrent paradigms and it is
been used in the scientific community [7].
In this paper we propose to apply this language (and

its underlying paradigm) to Genetic Algorithms (GA) [3],
which are general function optimizers that encode a poten-
tial solution to a specific problem in a simple data structure
(e.g. a chromosome). There are only two components of
them that are problem dependent: the solution encoding
and the function that evaluates the quality of a solution,
i.e., the fitness function. The rest of the algorithm does not
depend on the problem and could be implemented following
the best architecture and engineering practices.
Many of these practices have been proposed on the object

oriented paradigm [6], but this is not the case of the func-
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tional side. This work tries to show some possible areas of
improvement on that sense by focusing on GAs as a domain
of application and describing how their principal traits can
be modeled by means of Erlang constructs. This will be
done in the next section.

2. EVOLUTIONARYALGORITHM INACON-
CURRENT FUNCTIONAL LANGUAGE

A variety of programming patterns, i.e., paradigms, exist
for implementing the algorithms models. GAs are charac-
terized by an intensive use of strings (lists of some kind) for
encoding genes and a population that evolves via operators
that are applied to all or a part of it. Most modern lan-
guages can handle these data structures (and the operators
needed to manipulate them).

There is a claim in modern software development for pro-
gramming languages that help with concurrent program-
ming and simplify coding practice. The functional pro-
gramming language Erlang could be a good choice since
it provides the actor pattern concept for concurrency and
the functional paradigm for general modeling, design and
coding of solutions. Actors are concurrent execution units
which use asynchronous message passing for communication.
They are implemented as processes in the Erlang’s virtual
machine and not as operating system (OS) threads, which
means that they are very lightweight in creation and exe-
cution. The use of messages eliminates the sharing of state
and also many of the typical problems of concurrent de-
velopment, namely, supporting the emulation of the Object
Oriented (OO) paradigm with its modeling facilities. Func-
tional programming, the other main feature of the Erlang
language, is defined by the use of functions in program com-
position and by using lists.

Genetic algorithms, as many other computational mod-
els, tend to be described in literature in an operational and
imperative way. Their implementation in a functional lan-
guage must follow a different path, structuring the algorithm
model in less imperative and more declarative terms. We
are going to use a parallel pool based evolutionary strategy
(which was already used for instance in [4]) as use case.

The pool will be an execution entity (an actor acting like
a server) that will own the population and also keep a track
of the advance in the solution search. The clients, which are
concurrent, will do the calculations and will join and leave
the system at any time without consequences. Chromosomes
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Message Description
{configPool, NIM}

->

Initialization, the parame-
ter NIM is the initial con-
figuration.

{requestWork, Pid,

Capacity} ->

Client requests for a popu-
lation to evolve.

{generationEnd,

NewIndividuals,

OldIndexes, Pid} ->

One client reports its suc-
cessfully end of calculation.

Table 1: The messages that the pool accepts.

Message Description
initEvolution -> Marks the beginning of the

processing.
{evolve, P,

NIndexes} ->

When the pool could assign
a subpopulation to process.

Table 2: The messages a client is able to respond.

will be encoded as lists and the different parts of the GA
algorithm will be implemented as Erlang functions.
An Erlang actor is implemented by a sequence of pairs

pattern/expression defining each message that it could han-
dle. It is close to the OO parlance and a way to organize the
code. In this case we use one message per service that pool
must provide; Table 1 presents this. Clients are modeled
by actors. They are the units of evolution, with the main
computation responsibilities; the Table 2 shows its interface.
The two previous components constitute the main fea-

tures of the architecture of the algorithm; they are general-
purpose and could be used for solve many differents opti-
mization problems . In order to solve a particular situation,
they must be injected by several functions and data struc-
tures which define chromosomes, fitness function, mutation
operator, selection criteria and replacement policy. All these
particularizations must be implemented in an Erlang source
file and, in our case, configured in the configBuilder module.
The proposed design promotes a clear separation between

architecture (the general, constant and paradigmatic foun-
dation part) and problem encoding (the representation and
criteria of solution finding) which is good for applying the
library to solve others practical problems with GAs using
a pool based approach. This design has been implemented
and tested with a simple benchmark problem. This will be
presented in the next section.

3. EXPERIMENT AND CONCLUSIONS
In this ongoing project we are testing the efficiency and

simplicity of implementations of GAs by functional program-
ming. The parallel models of GA are mapped to actors in
the Erlang languages obtaining easily to understand archi-
tectures. All the code has been released as open source code
at https://github.com/jalbertcruz/erlEA/.
The library was tested with MaxOnes problem. The chro-

mosomes was 128 elements long, with an initial population
of 256 individuals; Table 3 presents the results.
This results shows that in this case there it is not con-

venient to use many clients in order to obtain the solution,
when the number of clients increase there is a lot of bad
solutions evaluated.
With this concept test we are showing how simple is to

No. clients Assignments Time (seconds)
25 3040 5.339950
50 4301 7.891000
100 5630 11.671210

Table 3: Experiments results.

structure a parallel GA, and now we could proceed with
more complex GA models, experiments and problems in or-
der to explore the potential of the technology.
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