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ABSTRACT
In biological organisms, a single genotype may map to sev-
eral phenotypes and vice-versa. This many-to-many rela-
tionship is believed to be a major drive of the phenotypic
robustness and genotypic evolvability found in all life forms.
Given the inherent complexity of the genotype-to-phenotype
(G2P) mappings, we use cellular automata (CAs) as rudi-
mentary proxies for biological organisms. CA models have
the same many-to-many G2P mappings, and their sensitiv-
ity to initial conditions allows the same genotype to differen-
tiate into different phenotypes. We use a bipartite network
to study the G2P landscape, and its projections in either
space. The network and its projections all have a Òheavy-
tailedÓ degree distribution, hinting at an increased robust-
ness supported by the network structure. We also show a
strong correlation between the phenotypeÕs complexity and
its robustness. We are currently working on analyzing the re-
lationships between the robustness and the evolvability both
at the genotypic and phenotypic level. Preliminary results
agree with those of previous similar studies, using different
computational models.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Unbounded-action de-
vices—cellular automata; I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search—Heuristic
methods; E.1 [Data Structures]: Graphs and networks—
Bipartite networks
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1. INTRODUCTION
For the past two decades, geneticists have been study-

ing the intricate genotype-to-phenotype (G2P) relationship
in biological organisms. Genome-wide association studies
(GWAS), and the recent advances in modern high through-
put sequencing technologies, have made understanding how
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metabolic reactions, cell signaling, and developmental path-
ways translate the genome of a living organism into its phe-
notype an achievable goal [4]. However, GWAS have also
unveiled unprecedented degrees of complexity, making clin-
ical progress much slower than anticipated. As geneticists
learn more about G2P mappings, it becomes more apparent
that there is a many-to-many relationship. Indeed, several
different genotypes, usually resulting from small perturba-
tions or neutral mutations, result in the exact same pheno-
type. This feature is responsible for the phenotypic robust-
ness of biological organisms, and their relative insensitivity
to small genetic perturbations. On the other hand, identical
genotypes may develop into dramatically different pheno-
types, depending on a set of internal and external signals
and factors. The embryonic stem cell, which may poten-
tially develop into any cell type, is a prime example of a
single genotype yielding several phenotypes. The ability to
adapt to internal and external factors is believed to be at
major factor of the evolvability of all life forms. Given the
inherent complexity of the G2P mappings, we recognize the
need for smart, adaptive mathematical, statistical or com-
putational models to study this relationship.

Cellular automata (CAs) are dynamical, usually deter-
ministic, discrete, abstract models primarily used to sim-
ulate and study distributed computation. CAs have also
been used for years as a rudimentary proxy for biological
organisms. One prevalent example is Kauffmann’s Random
Boolean Network (RBN) model for genetic regulatory net-
works [3]. In all CAs, update functions are generally rep-
resented as a Boolean lookup table of all possible binary
permutations of the cell’s neighborhood. Starting with an
initial configuration (IC) of cells (i.e. set of states of all
cells), the system will possibly pass throughout transient
until it reaches a configuration previously visited. Because
of its deterministic nature, the CA will get caught in a at-
tractor of one or more configurations. Due to their simplicity
and flexibility, CAs and their subsequent extensions are very
attractive as models to study the robustness and evolvabil-
ity in biological systems. Indeed, CAs have a genotype, a
phenotype, and mimic the many-to-many G2P mappings.
The update function of CAs is a direct equivalent of a geno-
type, which can be mutated at will, and is a set of rules
followed by the system to achieve a steady state. The at-
tractor reached by the CAs is the phenotype resulting from
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Figure 1: Filtered Bipartite G2P Network and Degree Distributions.

a genotype and an initial configuration. The same attractor
can be reached by different BUFs, and a single BUF can
result in different attractors depending on the IC. In this
work, we explore the evolvability, robustness, and accessibil-
ity of pseudo-biological organisms modeled by a small CA.
We exhaustively explore all G2P mappings of a CA by repre-
senting it in a bipartite network, and also projecting it onto
the phenotype and genotype landscape respectively. Addi-
tionally, we study the distribution of robustness (also called
neutrality) in the genotypic landscape of our model, and its
effect on the phenotypic landscape. Similarly, we look at the
genotypic and phenotypic evolvability, and the correlations
between robustness and evolvability. Indeed, the seemingly
contradictory effect of robustness and evolvability has been
studied and disproved in many systems, where they in fact
facilitate each other [1, 2].

2. METHODS & RESULTS
In order to fully explore the G2P relationship in our CA

model, we exhaustively explore all possible genotype map-
pings for all possible ICs. Unfortunately, the (super-)exponential
nature of the genotype and phenotype spaces, we are lim-
ited to a small number of cells, N = 5, and a radius r = 1,
where the radius defines the number of neighbors each cell
arranged on a ring can reach on either side. Therefore, a
radius r = 1 results in neighborhood sizes of n = 3. In

CAs, there are 22n = 223 = 256 possible genotypes. CAs
have 2N = 25 = 32 possible ICs, and the same number of
possible point (i.e. single configuration) attractors, and at

most 22n × 2N = 8192 possible attractors of any length, as
every combination of genotype and IC can potentially result
in a different phenotype. Figure 1 represents the filtered bi-
partite network, genotypes on the top row, phenotypes on
the bottom. The vertex size is proportional its degree (i.e.
to the number of mapped phenotypes, or mapping geno-
types respectively. For readability reasons, we have filtered
out vertices of a degree below 5.) We also show the trends
of degree distributions for the bipartite network, as well as
both projections of the genotypes only and of the pheno-
types only. All degree distributions are right skewed, with a
heavy tail, denoting the presence of highly connected “hub”
vertices and a “scale-free” like topology. The literature re-
ports several measurements of genotypic and phenotypic ro-
bustness and evolvability, we use the definitions detailed in
[5]. We study the statistical characteristics of the genotype
and phenotype space, assigning robustness, evolvability, and
accessibility “scores” to each genotype and phenotype. For
instance, we report in Figure 2 the strong, quasi linear posi-
tive correlation between the number of phenotypes mapping
to a genotype, and the evolvability of those genotypes. This
correlation is to be intuitively expected from biological or-
ganisms in which genotypes responsible for more phenotypes
are also considered the most evolvable.
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Figure 2: Strong correlation between the number of
phenotype mapped by a genotype and the genotypic
evolvability.

We also witness a strong negative correlation between the
length of the phenotype’s attractor and its robustness. This
result agrees with Kauffman’s work on RBNs. The same
negative correlation appears with the phenotypic evolvabil-
ity. The “bell shaped” distributions of genotypic and pheno-
typic robustness, or neutrality, are also aligned with results
in similar studies. We are currently working on analyzing the
complex relationships between robustness and evolvability,
both genotypic and phenotypic. These links are, we believe,
the most biologically relevant and could confer the most rel-
evance to our model.
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