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ABSTRACT 
Although a lot of crossover operators have been developed for 
genetic algorithms (GAs), there is not much research on 
combining different crossover operators to form robust real-coded 
GAs. In this work, we propose an ensemble of crossover operators 
which is realized by two different parallel populations. The 
effectiveness of the proposed method is evaluated for traditional 6 
benchmark functions. Results demonstrated that the proposed 
method has good generalization performance. 

Categories and Subject Descriptors 
I.2.8 [Problem Solving, Control Methods, and Search]: 
Heuristic Methods 

General Terms 
Algorithms, Design, Reliability 

Keywords 
Real-coded genetic algorithms, Ensemble learning, Blend 
crossover, Simulated binary crossover 

1. INTRODUCTION 
As the no free lunch theorem [1] suggests, there is no such 
algorithm that outperforms all others on a huge collection of 
optimization problems. In genetic algorithms (GAs), the crossover 
operator producing two descendants by combining the traits of two 
parents is regarded as the primary search operator. It can be found in 
[2] that in real-coded GAs (RCGAs), different crossover operators 
have different performance according to their exploration and 
exploitation features. Therefore, it is unlikely to devise RCGA only 
using a single crossover operator to perform well on various 
optimization problems. Hence, it is natural to consider an ensemble 
of different crossover operators and parameters to obtain benefits 
from the strength of each crossover operator. 

2. PROPOSED RCGA BASED ON THE 
ENSEMBLE OF CROSSOVER OPERATORS 
In this work, two widely used real-coded crossover operators, the 
blend crossover (BLX) [3], especially the version BLX-0.5, and 
simulated binary crossover (SBX) [4], were adopted for 
implementation of the ensemble idea. Most GAs generally apply 
crossover operators for all variables when the generated random 
number is less than or equal to the given crossover probability ( cp ). 

However, from several experimental simulations, we found that it is 
also important to decide whether each variable undergoes crossover 
for the practical application of GAs to solve multidimensional 
problems (see Observation 1 in Section 3). In this regard, we 
classify each BLX and SBX into two types: For each variable of D 
dimensional search space, 1) BLX1.0: All genes (i.e., variables) are 
crossed over within the gene-wise BLX operation, 2) BLX0.5: Only 
50% genes (on average) are crossed over within the gene-wise BLX 
operation, 3) SBX1.0: All genes are crossed over within the gene-
wise SBX operation, 4) SBX0.5: Only 50% genes (on average) are 
crossed over within the gene-wise SBX operation. 
The flowchart of RCGA based on the proposed ensembles of 
crossover operators is depicted in Fig 1. 

 
Figure 1. Flowchart of RCGA based on the Proposed Method 

Starting from the initial populations P1 and P2 with each size of 
N/2, each individual in P1 and P2 is mated with an individual 
selected using tournament selection with the tournament size of 2. 
Next, the ensemble of crossover operators with 1.0cp   is 

applied. Then, the non-uniform mutation [5] with the probability 
of 0.5/D (where D is the number of decision variables) is 
performed. As a result, a set of 2 N  offspring is generated and 
its top N individuals are chosen and stored to construct the 
offspring population. 
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3. EXPERIMENTAL RESULTS 
To evaluate the performance of the proposed algorithm, we compare 
it with the four GAs using different crossover operators BLX0.5, 
BLX1.0, SBX0.5 and SBX1.0 for the following 6 traditional 
benchmark functions with 50D   in Table 1. For the functions, the 
maximum number of fitness evaluations was set to 10,000 .D  

Table 1. The 5 Benchmark Functions 

Function Name Range 
Fitness 

Optimum 
F1 Ellipsoidal Function [-100, 100]D 0 
F2 Schwefel’s Problem 1.2 [-100, 100]D 0 
F3 Rosenbrock’s Function [-30, 30]D 0 
F4 Rastrigin’s Function [-5.12, 5.12]D 0 
F5 Ackley’s Function [-32, 32]D 0 
F6 Griewank’s Function [-600, 600]D 0 

The results for 100 independent runs are summarized in Table 2, where 
“Avg.” indicates the average of best fitness values for the 100 runs, and 
“Std. Dev.” stands for their standard deviation, and finally “Rank” is the 
performance order of the algorithms. For each function, the best 
algorithm among BLX0.5, BLX1.0, SBX0.5, and SBX1.0 are highlighted in 
boldface, and the algorithm with the shaded means it has the best 
performance in terms of fitness accuracy compared to the optimum. 

Table 2. Experimental Results 

  GA Type Avg. Std. Dev. Rank 

F1 

GA with BLX0.5 3.03E-14 8.95E-14 4 
GA with BLX1.0 1.37E-25 3.36E-25 2 
GA with SBX0.5 1.04E-16 5.09E-16 3 
GA with SBX1.0 3.91E-09 1.75E-09 5 

Proposed Method 8.66E-32 6.12E-31 1 

F2 

GA with BLX0.5 9.57E-13 3.35E-12 4 
GA with BLX1.0 1.78E-27 3.70E-27 2 
GA with SBX0.5 3.50E-15 3.10E-14 3 
GA with SBX1.0 4.13E-08 1.68E-08 5 

Proposed Method 5.80E-30 5.80E-29 1 

F3 

GA with BLX0.5 7.65E+01 4.13E+01 4 
GA with BLX1.0 5.21E+01 2.21E+01 1 
GA with SBX0.5 7.43E+01 3.31E+01 3 
GA with SBX1.0 1.41E+02 1.50E+02 5 

Proposed Method 6.58E+01 4.97E+01 2 

F4 

GA with BLX0.5 1.33E-04 1.33E-03 2 
GA with BLX1.0 1.53E+01 3.14E+00 4 
GA with SBX0.5 9.95E-03 9.95E-02 3 
GA with SBX1.0 2.09E+01 3.36E+00 5 

Proposed Method 1.13E-13 1.13E-12 1 

F5 

GA with BLX0.5 3.44E-09 4.90E-09 2 
GA with BLX1.0 2.00E+01 0.00E+00 4 
GA with SBX0.5 2.79E-09 2.33E-09 1 
GA with SBX1.0 2.00E+01 0.00E+00 4 

Proposed Method 2.58E-06 1.38E-05 3 

F6 

GA with BLX0.5 1.10E-12 3.81E-13 1 
GA with BLX1.0 1.60E-08 3.77E-09 3 
GA with SBX0.5 3.45E-04 1.72E-03 4 
GA with SBX1.0 5.67E-02 1.89E-02 5 

Proposed Method 4.47E-11 1.09E-11 2 
 

Observation 1. By comparing the performance of BLX0.5, BLX1.0, 
SBX0.5 and SBX1.0, it can be found that (i) BLX0.5 was best for F4 
and F6, (ii) BLX1.0 was the best for F1, F2 and F3, and (iii) 
SBX0.5 was the best for F5, (iv) SBX1.0 always was the worst for 
all functions. This observation led us to devise the ensemble of 
crossover operators (i.e., BLX0.5, BLX1.0, and SBX1.0). 

Observation 2. When it comes to the performance of the 
proposed method, it showed (i) the first ranked (i.e., the best 
performance) for F1, F2 and F4, (ii) the second ranked for F3 and 
F6, and (iii) the third ranked for F5. From this observation, we 
can conclude that the proposed method has better generalization 
performance than others. 

4. CONCLUDING REMARKS 
The preliminary results from this ongoing study suggest that the 
proposed ensemble of crossover operators could improve the 
generalization performance of RCGA. The current research is still 
being carried out by considering ensemble of various crossover 
operators. Further, it is worth noting that a similar ensemble 
concept can be applied to mutation operators in order to construct 
robust candidate solutions. The development of an adaptive 
mutation scheme is especially important because it can 
significantly enhance the performance of GA [6]. 
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