
A Robust Real-coded Genetic Algorithm
using an Ensemble of Crossover Operators

Jeonghwan Gwak
School of Information and Communications,

Gwangju Institute of Science and Technology (GIST),
Gwangju 500-712, Korea

gawk@gist.ac.kr

Moongu Jeon*
School of Information and Communications,

Gwangju Institute of Science and Technology (GIST),
Gwangju 500-712, Korea
mgjeon@gist.ac.kr

ABSTRACT
Although a lot of crossover operators have been developed for
genetic algorithms (GAs), there is not much research on
combining different crossover operators to form robust real-coded
GAs. In this work, we propose an ensemble of crossover operators
which is realized by two different parallel populations. The
effectiveness of the proposed method is evaluated for traditional 6
benchmark functions. Results demonstrated that the proposed
method has good generalization performance.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic Methods

General Terms
Algorithms, Design, Reliability

Keywords
Real-coded genetic algorithms, Ensemble learning, Blend
crossover, Simulated binary crossover

1. INTRODUCTION
As the no free lunch theorem [1] suggests, there is no such
algorithm that outperforms all others on a huge collection of
optimization problems. In genetic algorithms (GAs), the crossover
operator producing two descendants by combining the traits of two
parents is regarded as the primary search operator. It can be found in
[2] that in real-coded GAs (RCGAs), different crossover operators
have different performance according to their exploration and
exploitation features. Therefore, it is unlikely to devise RCGA only
using a single crossover operator to perform well on various
optimization problems. Hence, it is natural to consider an ensemble
of different crossover operators and parameters to obtain benefits
from the strength of each crossover operator.

2. PROPOSED RCGA BASED ON THE
ENSEMBLE OF CROSSOVER OPERATORS
In this work, two widely used real-coded crossover operators, the
blend crossover (BLX) [3], especially the version BLX-0.5, and
simulated binary crossover (SBX) [4], were adopted for
implementation of the ensemble idea. Most GAs generally apply
crossover operators for all variables when the generated random
number is less than or equal to the given crossover probability (cp).

However, from several experimental simulations, we found that it is
also important to decide whether each variable undergoes crossover
for the practical application of GAs to solve multidimensional
problems (see Observation 1 in Section 3). In this regard, we
classify each BLX and SBX into two types: For each variable of D
dimensional search space, 1) BLX1.0: All genes (i.e., variables) are
crossed over within the gene-wise BLX operation, 2) BLX0.5: Only
50% genes (on average) are crossed over within the gene-wise BLX
operation, 3) SBX1.0: All genes are crossed over within the gene-
wise SBX operation, 4) SBX0.5: Only 50% genes (on average) are
crossed over within the gene-wise SBX operation.
The flowchart of RCGA based on the proposed ensembles of
crossover operators is depicted in Fig 1.

Figure 1. Flowchart of RCGA based on the Proposed Method

Starting from the initial populations P1 and P2 with each size of
N/2, each individual in P1 and P2 is mated with an individual
selected using tournament selection with the tournament size of 2.
Next, the ensemble of crossover operators with 1.0cp  is

applied. Then, the non-uniform mutation [5] with the probability
of 0.5/D (where D is the number of decision variables) is
performed. As a result, a set of 2 N offspring is generated and
its top N individuals are chosen and stored to construct the
offspring population.

* Corresponding Author

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

1737

3. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed algorithm, we compare
it with the four GAs using different crossover operators BLX0.5,
BLX1.0, SBX0.5 and SBX1.0 for the following 6 traditional
benchmark functions with 50D  in Table 1. For the functions, the
maximum number of fitness evaluations was set to 10,000 .D

Table 1. The 5 Benchmark Functions

Function Name Range
Fitness

Optimum
F1 Ellipsoidal Function [-100, 100]D 0
F2 Schwefel’s Problem 1.2 [-100, 100]D 0
F3 Rosenbrock’s Function [-30, 30]D 0
F4 Rastrigin’s Function [-5.12, 5.12]D 0
F5 Ackley’s Function [-32, 32]D 0
F6 Griewank’s Function [-600, 600]D 0

The results for 100 independent runs are summarized in Table 2, where
“Avg.” indicates the average of best fitness values for the 100 runs, and
“Std. Dev.” stands for their standard deviation, and finally “Rank” is the
performance order of the algorithms. For each function, the best
algorithm among BLX0.5, BLX1.0, SBX0.5, and SBX1.0 are highlighted in
boldface, and the algorithm with the shaded means it has the best
performance in terms of fitness accuracy compared to the optimum.

Table 2. Experimental Results

 GA Type Avg. Std. Dev. Rank

F1

GA with BLX0.5 3.03E-14 8.95E-14 4
GA with BLX1.0 1.37E-25 3.36E-25 2
GA with SBX0.5 1.04E-16 5.09E-16 3
GA with SBX1.0 3.91E-09 1.75E-09 5

Proposed Method 8.66E-32 6.12E-31 1

F2

GA with BLX0.5 9.57E-13 3.35E-12 4
GA with BLX1.0 1.78E-27 3.70E-27 2
GA with SBX0.5 3.50E-15 3.10E-14 3
GA with SBX1.0 4.13E-08 1.68E-08 5

Proposed Method 5.80E-30 5.80E-29 1

F3

GA with BLX0.5 7.65E+01 4.13E+01 4
GA with BLX1.0 5.21E+01 2.21E+01 1
GA with SBX0.5 7.43E+01 3.31E+01 3
GA with SBX1.0 1.41E+02 1.50E+02 5

Proposed Method 6.58E+01 4.97E+01 2

F4

GA with BLX0.5 1.33E-04 1.33E-03 2
GA with BLX1.0 1.53E+01 3.14E+00 4
GA with SBX0.5 9.95E-03 9.95E-02 3
GA with SBX1.0 2.09E+01 3.36E+00 5

Proposed Method 1.13E-13 1.13E-12 1

F5

GA with BLX0.5 3.44E-09 4.90E-09 2
GA with BLX1.0 2.00E+01 0.00E+00 4
GA with SBX0.5 2.79E-09 2.33E-09 1
GA with SBX1.0 2.00E+01 0.00E+00 4

Proposed Method 2.58E-06 1.38E-05 3

F6

GA with BLX0.5 1.10E-12 3.81E-13 1
GA with BLX1.0 1.60E-08 3.77E-09 3
GA with SBX0.5 3.45E-04 1.72E-03 4
GA with SBX1.0 5.67E-02 1.89E-02 5

Proposed Method 4.47E-11 1.09E-11 2

Observation 1. By comparing the performance of BLX0.5, BLX1.0,
SBX0.5 and SBX1.0, it can be found that (i) BLX0.5 was best for F4
and F6, (ii) BLX1.0 was the best for F1, F2 and F3, and (iii)
SBX0.5 was the best for F5, (iv) SBX1.0 always was the worst for
all functions. This observation led us to devise the ensemble of
crossover operators (i.e., BLX0.5, BLX1.0, and SBX1.0).

Observation 2. When it comes to the performance of the
proposed method, it showed (i) the first ranked (i.e., the best
performance) for F1, F2 and F4, (ii) the second ranked for F3 and
F6, and (iii) the third ranked for F5. From this observation, we
can conclude that the proposed method has better generalization
performance than others.

4. CONCLUDING REMARKS
The preliminary results from this ongoing study suggest that the
proposed ensemble of crossover operators could improve the
generalization performance of RCGA. The current research is still
being carried out by considering ensemble of various crossover
operators. Further, it is worth noting that a similar ensemble
concept can be applied to mutation operators in order to construct
robust candidate solutions. The development of an adaptive
mutation scheme is especially important because it can
significantly enhance the performance of GA [6].

5. ACKNOWLEDGMENTS
This work was supported by the Systems Biology Infrastructure
Establishment Grant (2013) provided by Gwangju institute of
Science and Technology (GIST), and the Ministry of Culture,
Sports and Tourism (MCST) and Korea Creative Content Agency
(KOCCA) in the Culture Technology (CT) Research &
Development Program 2012.

6. REFERENCES
[1] Wolpert, D. H. and Macready, W. G. 1997. No free lunch

theorem for optimization. IEEE Trans. on Evolutionary
Computation, 1(1), pp. 67–82.

[2] Herrera, F., Lozano, M., and Sánchez, A. M. 2003. A
taxonomy for the crossover operator for real-coded genetic
algorithms: an experimental study, Int. J. Intell. Syst. 18, pp.
309–338.

[3] Eshelman, L. J. and Schaffer, J. D. 1993. Real-coded genetic
algorithms and interval-schemata. In: Whitley LD, editor.
Foundations of Genetic Algorithms 2. San Mateo, CA:
Morgan Kaufmann Publishers, pp. 187–202.

[4] Deb, K. and Agrawal, R. B. 1995. Simulated binary
crossover for continuous search space. Complex Systems, 9,
pp. 115–148.

[5] Michalewicz, Z. 1996. Genetic Algorithms + Data Structures
= Evolution Programs, 3rd ed., Springer, New York.

[6] Lobo, G. F., Lima, C. F. and Michalewicz, Z. (Eds) 2007.
Parameter setting in evolutionary algorithms. Springer, New
York, 2007.

1738

