
Quality versus Quantity of Rules in a Classifier Jury

[Extended Abstract]
∗

Jeffrey Horn
jhorn@nmu.edu

Matthew J. Holliday
matthewjacobholliday@gmail.com

Dylan J. Elliott
delliott@nmu.edu

Northern Michigan University
Marquette, MI 49855 USA

ABSTRACT

We show that under certain general circumstances there ex-
ists a choice of classifier rule length versus number of clas-
sifier rules, when given a fixed length classifier system, that
maximizes performance of the system.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning—Concept learn-

ing ; I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search—heuristic methods

Keywords

evolutionary computation, learning classifier system, Pitt-
style, binary classification, time series prediction, jury vote

1. INTRODUCTION
Given a fixed memory budget with which to express a

set of classifier rules (i.e., the product of rule length and the
number of rules), is it better to have a few long rules or many
short rules? Is there an optimal tradeoff between rule length
and number of rules? We begin to explore this issue for a
Pitt-style learning classifier system (LCS) [2] through exper-
iments on a particular binary time series prediction (BSP)
problem. We encode j classifiers (a.k.a., rules) each of length
k characters on a chromosome of length ℓ = j ∗k, and evolve
a population of n such chromosomes on a BSP problem [1].
We conduct a number of experiments varying j,k,ℓ, and n.
We find that for our particular LCS algorithm, parameter
settings, and BSP problem, the prediction accuracy of our
evolved classifier sets does indeed peak at an intermediate
setting of rule length k. While these results are empirical,
and limited to a single instance of BSP and to a specific type
of Pitt-style LCS (e.g., employing jury-style voting for rule
interactions), we suggest that the bell-shaped performance
curve that emerges from six different sets of experiments is
general to many LCS systems on many classification problem
domains. Given the computational constraints on evolving
large classifier systems for real-world problems, such perfor-
mance curves could be of practical importance.

∗A full version of this paper will be available at
http://cs.nmu.edu/~jeffhorn

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

2. BACKGROUND

2.1 Binary Time Series Prediction
We use the 10000-bit training set for the Binary Series

Prediction (BSP) contests [1] organized by Dan Ashlock for
the 2006 WCCI and CEC competitions. The set contains
5106 ones distributed among 4894 zeros by some unknown
function. The challenge of a BSP is to predict the next
bit in the series given all of the previous bits. A candidate
predictor, such as a classifier rule set, is evaluated on the
entire series by being asked to predict the next bit before
being shown the next bit. Thus the minimum score is zero
while the maximum score is 10000 correct predictions.

2.2 The LCS: Pitt-style with Jury Voting
Our predictor is a set of rules, each consisting of string of

k characters from the set {0, 1,#}, called a rule. We encode
a set of j such rules on a chromosome of length ℓ by simply
concatenating them, with ℓ = j ∗ k. (Note that we restrict
our algorithm to handle only complete rules by restricting
ℓ to be a multiple of k.) Encoding an entire rule set on a
single chromosome is known as thePitt-style LCS [2].

To use the encoded rule set to predict the next bit in the
BSP sequence we match each of the j rules against the last k
bits seen in the sequence, with ‘1’ matching ‘1’, ‘0’ matching
‘0’, and ‘#’ (a don’t care) matching both ‘1’ and ‘0’. If a rule
completely matches the last k bits (with no conflicts in all
k bit positions), then the rule is said to fire which means it
“predicts” that the next bit will be a ‘1’. If there is a conflict
in any of the k bit positions then there is no match and the
rule is considered to predict a ‘0’ next.

The individual rule predictions can be combined to make
a group prediction for the entire rule set in a number of
reasonable ways, such as majority voting. We choose a sim-
ple system we call jury voting whereby if ANY of the rules
predicts a ‘1’ then the rule set predicts a ‘1’; otherwise the
set predicts a ’0’. Thus it only takes a single rule match to
produce a ‘1’ prediction. Put another way, a prediction of
’0’ requires a unanimous vote (that is, no rule matches the
k bits). This is similar to the way a jury functions in that a
result of “guilty” requires unanimity whereas a result of “not
guilty” requires only a single dissent.

We apply a simple genetic algorithm (sGA) [2] to a pop-
ulation of n chromosomes, generated initially at random.
Each generation we apply binary tournament selection using
as fitness the number of bits correctly predicted by the chro-
mosomes’ decoded rule sets, followed by two-point crossover
to create a new population for evaluation.

1739



Table 1: Average (10 runs) Number of Bits Correctly Predicted

Rule Length
Chrom. Length (popsize)

1 2 3 4 6 8 12 16 24 32 64

24 (1000) 5106 5105 6070 7406 7370 7139 6909 - 6224 - -

24 (2000) 5106 5105 6781 7406 7601 7148 6917 - 6224 - -

32 (1000) 5106 5105 - 7406 - 7545 - 6787 - 6026 -

32 (2000) 5106 5105 - 7406 - 7600 - 6840 - 6221 -

64 (1000) 5106 5105 - 7015 - 8132 - 7477 - 6462 4862

64 (2000) 5106 5105 - 7120 - 8179 - 7535 - 6788 4862

3. EXPERIMENTS

3.1 Setup
For all of the runs certain parameters of evolution are

fixed: number of generations is 200, mutation rate is set to
zero (no mutation), crossover probability is set to 0.9, tour-
nament size is always two, and the don’t care probability
(i.e., the probability of generating a “#” character indepen-
dently for each position of each chromosome in the initial
generation) is 0.5. We use two-point crossover (with cross-
ing points selected uniformly at random from all ℓ inter-loci
points), and generational replacement (i.e., replacing an en-
tire population with its offspring each generation).
We conduct runs for three different chromosome lengths:

ℓ = 24, 32, and 64. For each chromosome length we try two
population sizes: n = 1000 and 2000. For each combination
of ℓ and n we average the results of ten runs, each using a
different random number seed and hence a different sequence
of random numbers. Note that the same ten random seeds
were used for each combination of ℓ, n.

3.2 Results
Table 1 shows the average performance of the six exper-

iments (that is, three chromosome lengths at two different
population sizes each) in terms of the number of bits (out
of 10000 total) in the BSP data correctly predicted by the
best individual in the final generation (number 200), aver-
aged over ten different (unique random seed) runs. Figure 1
plots these mean performances as a function of rule length
and chromosome length, with lines connecting the results for
each series corresponding to a single combination of ℓ and
n. The shaded regions show the difference in average per-
formance for two different population sizes (1000 and 2000).
In our runs, increasing population size always results in im-
proved or identical performance.

3.3 Analysis
As intuition might suggest, we do see generally higher per-

formance with increased population size and increased chro-
mosome length. Perhaps less intuitive is the apparent peak
in performance at an intermediate rule size, when varying
the way a fixed chromosome length is divided up into equally
sized rules. As can be seen in each of the series of runs for
each fixed chromosome length, having six to eight rules of six
to eight characters each seems to be better than having more
and smaller rules or fewer but larger rules. This empirical
result holds across three different chromosome lengths and
two different population sizes. These data point to a bal-
ance that needs to be found (at least for this algorithm on
this problem), a balance between investing expressive power

PREDICTION ACCURACY

0

20

40

60
Rule Length

20

40

60Chrom. Length

4000

6000

8000

Figure 1: At all three chromosome lengths, the per-
formance data indicate that an intermediate tradeoff
of rule size to number of rules is best.

in a few sophisticated individuals versus distributing such
processing power out among many simpler agents. To ex-
plore just how general this balance might be, we plan to take
this approach on other classification problems (e.g., charac-
ter recognition, feature detection), and with other types of
conflict resolution (e.g., majority voting instead of jury vot-
ing). We would also like to encode the rule length on the
chromosome to see if evolution can find some kind of optimal
rule length on its own.

4. ADDITIONAL AUTHORS
Additional authors are the following alumni of Dr. Horn’s

fall 2012 class at NMU, CS 470Artificial Intelligence: Joshua
A. Chomicki (email: jchomick@nmu.edu), David A. Pfeif-
fer (email: DavidPfeiffer54@gmail.com), Steven M. Scheel
(email: sscheel@nmu.edu), Lewis D. Steiner (email:
lsteiner@nmu.edu), Erik P. Wisuri (email: ewisuri@nmu.edu),
James M. Zeits (email: jzeits@nmu.edu), Jordan M. Bal
(email: jobal@nmu.edu), Chelsea G. Burton (email: chbur-
ton@nmu.edu), Micah A. Erickson (email: micerick@nmu.edu),
and Nicholas D. McIntyre-Wyma (email: nmcintyr@nmu.edu).

5. REFERENCES
[1] D. Ashlock. Binary Series Prediction Contest, In WCCI

2006 and CEC 2006 competitions, http://
eldar.mathstat.uoguelph.ca/dashlock/CEC05/BSP.html,
2006.

[2] D. E. Goldberg. Genetic Algorithms in Search,

Optimization, and Machine Learning. Addison-Wesley,
New York, 1989.

1740




