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ABSTRACT 
This paper presents a comparative study of the Multi-Branches 
Genetic Programming (MBGP), GP-NARMAX model approach 
and Standard Genetic Programming (SGP) for modelling 
problems. Sunspots data have been considered as study case in 
order to performance this comparison. The main point is to 
generate mathematical models in a polynomial form; thus the root 
node for MBGP has been set as the addition operator. Results 
show that MBGP rapidly evolves towards good mathematical 
models which are also easily to translate as well as the GP-
NARMAX approach represented in its polynomial form in 
contrast to SGP.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, Search. 

General Terms 
 Algorithms, Performance, Design. 

Keywords 
Genetic Programming, Symbolic Regression, Modelling. 

1. INTRODUCTION 
Symbolic regression problems have traditionally been 

benchmark tests in the field of Genetic Programming (GP). 
Diverse approaches have been proposed from standard genetic 
programming SGP [1] and linear genetic programming [2] to 
others extensions such as the accelerated genetic programming 
introduced by Nikolaev and Iba [3] that considers the use of 
transfer polynomials combined with a recursive least squares 
algorithm, the robust symbolic regression with affine arithmetic 
proposed by Pennachin, et al. [4] and GP for symbolic regression 
using nearest neighbor indexing proposed by Mc Ree [5] amongst 
others.  

This paper then details with the use of the previous proposed 
Multi-Branches Genetic Programming (MBGP) [6] for sunspots 
data modeling, and results are compared against standard genetic 
programming (SGP) and GP-NARXMAX model [7] in terms of 
the generation of simple models possessing a good performance. 

 

2. GP APPROACHES 
2.1 SGP 
Standard Genetic Programming (SGP) introduced by Koza [1] is 
used in order to compare the performance of the MBGP and GP –
NARMAX for modeling sunspots data. 

2.2 MBGP   
Multi-Branches Genetic Programming consists of a root node 
which is fixed and whose content is also fixed. This is defined as 
the addition function. This is with the purpose to evolve 
polynomial models. N+1 coefficients are also defined 
corresponding to coefficients of the N branches plus the constant 
term. The N branches are randomly created from a defined 
primitives set as it is the case in SGP. However, the maximum 
depth or the maximum number of nodes of these branches are 
much lower than the maximum depth of the individuals in SGP. 
All branches have also the same maximum depth and their 
associated coefficients are estimated by means of a Least Square 
Algorithm. However, coefficients can be also evolved by 
applying the ephemeral mutation operator used in SGP and in this 
case, if a coefficient is set to zero, a neutral effect is presented in 
that particular individual. The MBGP representation is shown in 
Figure 1. The two main genetic operators are crossover and 
mutation. Crossover works by randomly selecting a branch in 
each of the parents and exchanging these branches between them. 
In the case of mutation, a branch is randomly selected and 
deleted. This deleted branch is replaced by a new branch 
randomly generated. It is clear seen than both crossover and 
mutation operators work in an easier manner in comparison to 
SGP. This is due to the fact that the whole branch is taken to 
crossover or mutate and there is any need to randomly select a 
node and check if the selected sub-branch is syntactically valid. 

2.3 GP-NARMAX 
The well-known NARMAX (Non-linear AutoRegressive Moving 
Average with eXogenous inputs) model is an extended ARMAX 
description for representing non-linear systems. This model is 
given by a non-linear function    of  the output y(k), the input u(k) 
and the possible  noise disturbance e(k). Thus, 

              euy nkekendkudkunkykyFky  ,...,1,1,...,,,...,1

 (1) 
where ny, nu and ne are the maximum lags considered for the 
output, input and noise terms, respectively, d is the delay and  is 
the degree of non-linearity of the model structure. The polynomial 
NARMAX  model  is the most common  expression  which works 
well in practical applications. Equation (1) can be written in 
polynomial form as, 
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            + higher order terms up to degree l ]                              (2) 
 
Thus, generation of polynomial NARMAX models by means of 
GP is performed by defining addition and product of monomials 
and polynomials. These are defined by the elements of the 
terminal set (delayed input, output and noise terms) as shown in 
Figure 2. 

 

Figure 1. MBGP Encoding. 
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Figure 2. NARMAX-GP encoding (X1=constant term; 
x2=y(k-1); X3=y(k-2); X4=u(k-1)) 

3. RESULTS AND DISCUSSIONS 
Record data of the annual sunspots from the year 1500 to 2010 
was used. In the case of SGP, crossover is defined by the 
exchanging of selected sub-branches of the parent-individuals. 
Mutation selects a random node, deletes the associated sub-branch 
and replaces it by a branch randomly generated.  

In the case of MBGP, crossover and mutation operator are defined 
as in section II. For both approaches, same set of functions are 
defined and also the same number of nodes are considered. 
Parameter setting is detailed in Table I. Genetic operators for GP-
NARMAX approach were defined as in the case of SGP, but note 
that maximum number of nodes for GP-NARMAX has been 
defined as 40; individuals trees of this size can generate complex 
polynomial models as shown in Table II, where individuals 
consisting of only 39 nodes correspond to polynomials models of 
hundreds of terms. This is due to the product of polynomials. In 
the case of MBGP, it performed better than the SGP producing 

simple models consisting of only 40 nodes even though a 
maximum number of branches of 10 of 16 nodes size were 
defined. A second experiment shown in Table II as MBGP2 was 
performed. Here, the number of branches increased to 30; 
however, improvement in performance was not significant. GP-
NARMAX showed the best performance, however models of high 
complexity (hundreds of terms of polynomial) corresponded to 
these results. Considering a {+, *} function set for SGP and 
MBGP cases, the mean square errors increase. In order to reduce 
complexity of NARMAX models, a multi-objective formulation is 
an alternative, in contrast to MBGP that generates simple models 
based on a single objective approach.    

Table I. SGP and MBGP Parameter Setting 
 SGP MBGP GP-NARMAX 

Function Set +, -, *, %, cos, 
sin, sqrtp, 
pow2 

+, -, *, %, cos, 
sin, sqrtp, 
pow2 

+, * 

Population Size 100 100 100 

Number of 
Branches 

N/A 10 N/A 

Max.Nodes 
Branches 

N/A 16 N/A 

Max. Nodes  160 N/A 40 

Pmut 0.05 0.05 0.05 

Pxover 0.95 0.95 0.95 

Max. 
Generations 

1000 1000 1000 

Table II. Comparative Results 
 SGP MBGP1 MBGP2 NARMAX 

Avg 17.322 14.567 14.519 13.873 

Best 16.434 14.516 14.132 12.806 

Nodes 128 41 172 39 

Terms  11 31 203 
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