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ABSTRACT
In this abstract we describe a proactive strategy followed
by a distributed evolutionary algorithm to adapt its migra-
tion policy. The proactive decision is made locally within
each subpopulation, ant it is based on the entropy of that
subpopulation. In that way, each subpopulation can ask for
more/less frequent migrations from its neighbors in order to
maintain the genetic diversity at a desired level, thus avoid-
ing the subpopulations to get trapped into local minima.
We conduct computational experiments on a set of differ-
ent problems and it is shown that our proactive approach
outperforms classical dEA settings by reaching accurate so-
lutions in a lower number of generations.
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I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Theory, Algorithms

Keywords
distributed evolutionary algorithms, heterogeneity, proac-
tive algorithms

1. INTRODUCTION
The working principles of a distributed EA (dEAs) in-

clude a communication phase, which is governed by a mi-
gration policy. The migration policy determines how com-
munication is carried out by the islands of the dGA, and
its is defined by the migration period, migration rate, selec-
tion/replacement of migrants, and topology. According to
the results presented by Tanese [4], performance degrades if
migration happens too frequently or too infrequently, such
that the frequency of migration is a critical parameter for
dEAs. It also occurs, as stated by [1], that the best parame-
ter setting of an algorithm is different depending on the stage
of the evolutionary process. These two factors leads to engi-
neering algorithms whose parametrization is automatically
modified according to an intelligent adaptive strategy.
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Our goal here is to adaptively control the migration pol-
icy of a dEA using the novel idea of the algorithm being
proactive based on entropy information [3] of each subpop-
ulation. In order to isolate their effect and better analyze
the results, only one single migration parameter is under
study: the migration period (mig period) at which the in-
dividuals are exchanged among subpopulations. Whenever
the entropy falls below a given threshold, these subpopula-
tions proactively look for new genetic material by reducing
the migration period of the subpopulation (more frequent
migrations) that provides this island with more migrants.

In the following the structure of the new proactive dEA
is presented and brief description of the results reached is
further explained.

2. PROACT: A PROACTIVE DEA
The working of our proactive strategy, called Proact, is

as follows. Let H(g)i be the entropy value of subpopula-
tion pi at generation g. When the entropy value is close
to 1.0 in a given island, we assume that the island has a
good and diverse genetic material, so therefore the search
has to be further intensified (increase exploitation with less
frequent incoming individuals). On the other hand, the
strategy tries to promote the exploration (more frequent mi-
grations) when H(g)i is close to zero. In consequence, when
pi detects a decreasing diversity (low value of H(g)i), it asks
pi−1 to send individuals with higher frequency by updating
the mig period at pi−1. That is, pi receives new genetic
material proactively by taking into account its actual needs.
In this way, pi acts in advance of losing diversity (proactive
behavior), in other words, it anticipates the loss of diversity
and changes its incoming flow of migrants.

Our proactive scheme uses an upper and a lower bound of
H(g)i, H and H respectively, in order to modify the migra-
tion frequency. Therefore, if H(g)i > H, Proact decreases
the migration period value in a value equal to the popu-
lation size (µ value); analogously, if H(g)i < H, Proact

increases the period in µ units. Finally, if H ≤ H(g)i ≤ H,
we assume the search has a controlled entropy and, con-
sequently, the migration period remains without modifica-
tion. Algorithm 1 sketches the proactive strategy followed
by each proactive subpopulation dEAi. Of course, the mi-
gration periods are assumed to be discrete values in the
range [mig periodmin,mig periodmax]. Thus, Proact can
directly measure and control the migration period.

Proact uses an unidirectional ring topology so that each
subpopulation pi only receives/sends individuals from/to
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Procedure 1 Proactive strategy

if (H(g)i > H) then

mig period = mig period− µ;
else

if (H(g)i < H) then

mig period = mig period+ µ;
end if

end if

pi

pi-1 pi+1

Figure 1: Outline of the ring topology of Proact.

subpopulation pi−1/pi+1. The selection and replacement
strategies are, respectively, sending the best and always re-
placing the worst. The migration rate (or the number of
individuals involved in each operation) is one.

Summarizing, each subpopulation pi of the Proact sends:
i) its migration period to the left neighboring subpopulation
in the ring (island pi−1) in a proactive way, and ii) the best
solution found so far to the right neighboring subpopula-
tion in the ring at a frequency indicated by the pi+1 island.
Consequently, there is a double sense of information flow
between the islands. Figure 1 outlines this scheme.

3. RESULTS
The goal of this section is to evaluate Proact

in terms of its effectiveness with respect to its ho-
mogeneous counterparts, in which the migration pe-
riod is fixed and preprogrammed for the entire execu-
tion. They have been named Hom< mig period >, with
mig period ∈ {32, 64, 128, 256, 512}, that is, from a strong
coupling among islands to fairly isolated search. As a
testbed, we have used two different problems: a large in-
stance of the the Massively Multimodal Deceptive Problem
(MMDP) with k = 40 deceptive subproblems, and a Knap-
sack Problem instance with 1000 items (K100-1000).

The common settings for all the algorithms is as follows.
The whole population is composed of 512 individuals, di-
vided in 8 islands (each island is physically run on a sep-
arate processor). The maximum number of generations is
fixed at 5000. The tentative solutions for the problems are
encoded as binary strings. The genetic operators used within
the evolutionary loop are binary tournament selection, two
point crossover, and bit flip mutation. The crossover rate
is set to 0.65, meanwhile the mutation rates is set to 1/L,
where L is the length of the solutions. Proportional selec-
tion is used to build up the next population. The values
for the lower and upper bound that triggers the proactive
actions of Proact, i.e., H and H, has been set to 0.3 and
0.6, respectively.

Both Proact and the variants of homogeneous dGAs are
able to find the optimal values for the problems considered,

Table 1: Experimental results of Proact and homo-

geneous dEAs.

MMDP K100-1000
Proact 254.03 633.67
Hom32 265.03 1040.10
Hom64 321.03 929.67

Hom128 356.13 846.03
Hom256 348.77 1079.27
Hom512 326.03 1222.37

so we are enabled to analyze the numerical effort of the
different approaches. That is, Table 1 shows the average
number of generations (over 30 independent runs) that the
algorithms considered in this study need to reach the optimal
solution for each instance.

The results show that Proact is the algorithm that re-
quired the lower number of generations to reach the optimal
solution for each instance of the MMDP and Knapsack prob-
lems. That is, the controlled in the population diversity of
Proact has allowed the algorithm to maintain enough ge-
netic material to avoid premature convergence towards local
minima. This is of special interest in many optimization sce-
narios in which a reduced number of function evaluations is
a must (e.g., simulation optimization). The results obtained
are coherent with previous findings [2].

4. CONCLUSIONS AND FUTUREWORK
In this work, we have introduced Proact, a distributed

EA which proactively controls the migration period of the
neighboring subpopulations in order to maintain a good ge-
netic diversity within each island. Decisions are made based
on the Shannon entropy. We plan to extend Proact for
adapting other configuration parameters (migration policy
or genetic operators) that allow the algorithm to have a bet-
ter control of the search.
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