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ABSTRACT 
This paper reports on fault-tolerant technology for use with high-
speed parallel evolutionary computation on many-core processors. In 
particular, for distributed GA models which communicate between 
islands, we propose a method where an island's ID number is added 
to the header of data transferred by this island for use in fault 
detection, and we evaluate this method using Deceptive functions 
and Sudoku puzzles. As a result, we show that it is possible to detect 
single stuck-at faults with practically negligible overheads in 
applications where the time spent performing genetic operations is 
large compared with the data transfer speed between islands. We 
also show that it is still possible to obtain an optimal solution when a 
single stuck-at fault is assumed to have occurred, and that increasing 
the number of parallel threads has the effect of making the system 
less susceptible to faults and more sustainable.   

Categories and Subject Descriptors 
D.0 [Computer Applications]: General 

General Terms 
Reliability, Performance, Design, Experimentation, Verification. 
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1. INTRODUCTION 
With the growing popularity of GPU devices and the use of these 
devices in fields where high reliability is required, such as scientific 
computing and data centers, NVIDIA has developed the Tesla series 
of GPUs with ECC memory (error checking and correction memory) 
functions.  

In this ECC memory, additional information such as a parity code 
must be added to each data word. This means that the installed 
memory must be allocated for the storage of parity codes. Although 
there is no problem allocating the parity codes to part of a high-
capacity memory region such as the global memory (GM), this 
approach is unsuitable for the allocation of smaller memory regions 
such as registers or shared memory inside a streaming 
multiprocessor (SM). Next, the ECC memory can correct single-bit 
errors, and can also detect errors of two or more bits but without the 
ability to identify the locations of these errors. Therefore, ECC 
memory is effective for transient faults, but not always sufficient for 
stuck-at faults (Individual signals are assumed to be stuck at Logical 

'1' or '0'). Furthermore, modern supercomputers are often configured 
by connecting multiple GPUs in large-scale networks due to the 
advantages of such architectures, including their very high 
cost/performance ratios and low power consumption. Thus, outside 
of the GMs, it is also essential to have some way of detecting faults 
in the interconnections between the SMs and GMs, or in the network 
between the GPUs.  

Against this background, we have already showed that when parallel 
evolutionary computation is performed in many-core processors 
using a scheme based on independent competition, it seems that 
benefits such as higher reliability and lower susceptibility to transient 
errors can be achieved [1]. In this paper, we propose an island-model 
fault-tolerant technology that takes communication into 
consideration. 

2. AN ISLAND-MODEL FAULT-
TOLERANT TECHNIQUE  
In a GPU, the transfer of data between SMs is generally specified as 
being performed in byte units. On the other hand, the data to be 
exchanged does not normally correspond to an exact number of byte 
units, so the GPU system pads out the data with random bits to form 
a whole number of bytes for transfer between the SMs. Our basic 
idea is to perform error detection by making using these left over bits 
when data is transferred between SMs. 

Figure 1 shows an example of how this idea can be implemented. In 
an island model, it is usually determined in advance which island 
will transfer data to which island. Here is an example of an 
implementation where a single island corresponds to a single SM. In 
this example, data is transferred between SMs with an added fault 
detection header that uses the bits that are left over when the data is 
converted into byte units, and each SM stores a cyclic list showing 
the predetermined order in which data is sent to it from the other 
SMs. Faults can then be detected by checking whether or not the 
header information in the received data matches the information 
recorded in the cyclic list. When a fault is detected, the genetic 
operations are continued without accepting the received data.  

The target of fault detection is assumed to be single stuck-at faults in 
the SMs or on the network. When there is a fault in the SM on the 
transmitting side, errors occur in the transferred header data so that it 
fails to match the information in the cyclic list registered in the 
receiving SM. As a result, the fault can be detected and the number 
of the SM where this fault occurred can be reported. When there is a 
fault in the network, this can be detected when a fault has occurred at 
the header insertion location. It is thus possible to detect a single 
fault at any location on the network by shifting the header insertion 
position each time data is transferred. 
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