
Fault-tolerance of Distributed Genetic Algorithms
on Many-core Processors

Yuji Sato
Hosei University

3-7-2 Kajino-cho Koganei-shi
Tokyo 184-8584 JAPAN

+81-42-387-4533

yuji@k.hosei.ac.jp

Mikiko Sato
Tokyo University of Agriculture and Technology

2-24-16 Naka-cho, Koganei-shi
Tokyo 184-8588 JAPAN

+81-42-388-7139

mikiko@namikilab.tuat.ac.jp

ABSTRACT
This paper reports on fault-tolerant technology for use with high-
speed parallel evolutionary computation on many-core processors. In
particular, for distributed GA models which communicate between
islands, we propose a method where an island's ID number is added
to the header of data transferred by this island for use in fault
detection, and we evaluate this method using Deceptive functions
and Sudoku puzzles. As a result, we show that it is possible to detect
single stuck-at faults with practically negligible overheads in
applications where the time spent performing genetic operations is
large compared with the data transfer speed between islands. We
also show that it is still possible to obtain an optimal solution when a
single stuck-at fault is assumed to have occurred, and that increasing
the number of parallel threads has the effect of making the system
less susceptible to faults and more sustainable.

Categories and Subject Descriptors
D.0 [Computer Applications]: General

General Terms
Reliability, Performance, Design, Experimentation, Verification.

Keywords
Genetic Algorithms, Fault-tolerance, Many-core Processors

1. INTRODUCTION
With the growing popularity of GPU devices and the use of these
devices in fields where high reliability is required, such as scientific
computing and data centers, NVIDIA has developed the Tesla series
of GPUs with ECC memory (error checking and correction memory)
functions.

In this ECC memory, additional information such as a parity code
must be added to each data word. This means that the installed
memory must be allocated for the storage of parity codes. Although
there is no problem allocating the parity codes to part of a high-
capacity memory region such as the global memory (GM), this
approach is unsuitable for the allocation of smaller memory regions
such as registers or shared memory inside a streaming
multiprocessor (SM). Next, the ECC memory can correct single-bit
errors, and can also detect errors of two or more bits but without the
ability to identify the locations of these errors. Therefore, ECC
memory is effective for transient faults, but not always sufficient for
stuck-at faults (Individual signals are assumed to be stuck at Logical

'1' or '0'). Furthermore, modern supercomputers are often configured
by connecting multiple GPUs in large-scale networks due to the
advantages of such architectures, including their very high
cost/performance ratios and low power consumption. Thus, outside
of the GMs, it is also essential to have some way of detecting faults
in the interconnections between the SMs and GMs, or in the network
between the GPUs.

Against this background, we have already showed that when parallel
evolutionary computation is performed in many-core processors
using a scheme based on independent competition, it seems that
benefits such as higher reliability and lower susceptibility to transient
errors can be achieved [1]. In this paper, we propose an island-model
fault-tolerant technology that takes communication into
consideration.

2. AN ISLAND-MODEL FAULT-
TOLERANT TECHNIQUE
In a GPU, the transfer of data between SMs is generally specified as
being performed in byte units. On the other hand, the data to be
exchanged does not normally correspond to an exact number of byte
units, so the GPU system pads out the data with random bits to form
a whole number of bytes for transfer between the SMs. Our basic
idea is to perform error detection by making using these left over bits
when data is transferred between SMs.

Figure 1 shows an example of how this idea can be implemented. In
an island model, it is usually determined in advance which island
will transfer data to which island. Here is an example of an
implementation where a single island corresponds to a single SM. In
this example, data is transferred between SMs with an added fault
detection header that uses the bits that are left over when the data is
converted into byte units, and each SM stores a cyclic list showing
the predetermined order in which data is sent to it from the other
SMs. Faults can then be detected by checking whether or not the
header information in the received data matches the information
recorded in the cyclic list. When a fault is detected, the genetic
operations are continued without accepting the received data.

The target of fault detection is assumed to be single stuck-at faults in
the SMs or on the network. When there is a fault in the SM on the
transmitting side, errors occur in the transferred header data so that it
fails to match the information in the cyclic list registered in the
receiving SM. As a result, the fault can be detected and the number
of the SM where this fault occurred can be reported. When there is a
fault in the network, this can be detected when a fault has occurred at
the header insertion location. It is thus possible to detect a single
fault at any location on the network by shifting the header insertion
position each time data is transferred.

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

1749

F
is

3
3
W
O
p
c
th
tr
s
S
u
g
o
r
in
w
o
F
id

F
o
p

F
th
a
c
f
h
m
(
tr
th

Fig. 1. Concep
sland models.

3. EXPERI
3.1 Evaluat
We investigated
Opteron Quad C
performed in a
connecting two O
he relationship b
ransfers, the nu

solution, and the
Sudoku puzzles [
until convergence
graph shows th
operations per sec
esults obtained w
nterval represent

where fault detec
obtained in expe
Figure shows, the
dea are negligibl

Fig. 2. Data tr
of generations ne
performance per g

Figures 3 shows
he number of gen

assuming a single
correspond to (fro
fault detection he
headers and a si
method where se
"Next" method)
ransfer interval o
here are two thre

0

2000

4000

6000

8000

10000

12000

50

ge
ne

ra
ti

on

Nomal Migration
Throughput of N

ptual illustration

IMENT
tion using Su

the overhead f
Core 2380 multi-

system configu
Opteron 2380 pr
between the num

umber of genera
processing perfo

[2]. The bar grap
e, and the values
e processing p
cond shown on th
with 4 threads. T
t ordinary migrat
ction headers are
eriments with th
e overheads incu
ly small, regardle

ransfer interval (n
eeded to reach a
generation (num

the relationship
nerations needed
e stuck-at fault. T
om left to right)
eaders inserted,
ingle stuck-at fa
equential data is
. In this method
of 200 generatio
eads and we ass

100 150
n
Nomal Migration

of the fault-tole

udoku puzz
for fault detectio
-core processor.
ured with 8 co
ocessors togethe
mber of generat

ations needed to
formance per gen
ph shows the num

are shown on th
erformance, wit
he right side. Th

The two bar graph
tion from left to r
e inserted. Both s
he same initial p
urred by impleme
ess of the data tra

number of gener
an optimal solut
ber of threads: 4)

between the num
d to obtain an opt
The three bar gra
ordinary migrat
and migration w

ault. Fig. 3 show
transferred to a

d, the results ob
ons are shown. In
sume a fault in o

200 400 600
send ID to Next Th
Throughput of sen

erant technique

les
on using an AM

Experiments w
ore processors
er. Figures 2 sho
tions between d

o reach an optim
neration for solvi
mber of generatio
he left side. The l
th the number
is Figure shows
hs for each trans
right, and migrati
sets of results w
population. As t
enting the propos
ansfer interval.

rations) vs. numb
ion and processi
)

mber of threads a
timal solution wh
aphs for each thre
ion, migration w

with fault detecti
ws the results o
neighboring thre

btained with a d
n this Figure, wh
one thread, then

750

800

850

900

950

1000

T
hr

ou
gh

pu
t(

ge
ne

ra
ti

on
/s

ec
)

h.
nd ID to Next Th.

for

MD
were

by
ows
data
mal
ing
ons
line

of
the

sfer
ion

were
this
sed

ber
ing

and
hen
ead

with
ion
f a
ead

data
hen
the

number
possible
assumpt
ability to

Fig. 3.
generati
at fault (

3.2 E
We inve
Geforce
configur
64-bits (
byte has
extra bit
were ob
this Tab
proposed
headers,

Header

Execut

4. CO
In this p
between
island is
in fault d
proposed
optimal
and that
less susc

5. RE
[1] Sat

Sus
Inte
(20

[2] Sup
http
CT
10.

of generations n
e to obtain an opt
tion of a fault i
o find a solution.

Relationship b
ions needed to fi
("Next" method,

Evaluation u
estigated the ov

e GTX 680 GPU
red with 8 SMs.
(8-bytes) and the
s to be added. Ta
ts has to be adde
btained in experi
ble shows, the
d idea are about
, but it is still pos

TABLE I.

r length

tion time [sec]

ONCLUSIO
paper, for an islan
n islands, we pro
s added to the he
detection, and w
d idea is practic
solution can be

t increasing the n
ceptible to faults

EFERENCE
to, Y.: Paralleliza
stainability on M
elligent Systems

012).

per difficult Sudo
p://lipas.uwasa.fi

T20A6300%20AI
. 2. 2013).

0

5000

10000

15000

20000

ge
ne

ra
ti

on

Nomal Migr

needed for conver
timal solution. W
in one thread ha
.

between number
ind a solution wh
transfer interval

using Decept
verhead for fault
U. Experiments w
In this experime
ere is no space f
able I shows the
ed for header ins
iments with the

overheads incu
ut 13%, for any
ssible to obtain a

HEADER LENGTH A

0-bits

0.46

ONS
nd model where c
oposed a method
eader of data tran

we have shown th
ally negligible. W

e obtained even
number of parall
.

ES
ation of Genetic

Many-core Proces
s and Computing

oku-1. Available
fi/~timan/sudoku/
Iterative%20Proj

2thread 4thr
ation send ID to N

rgence increases
With four or eight

as hardly any e

r of threads and
hen assuming a s
: 200 generation

tive function
t detection using
were performed
ent, the original d
for header inserti
overheads obtain

sertion. Whole se
same initial pop

urred by implem
bit length of fau

an optimal solutio

AND ECESUTION T

3-bits

0.52

communication i
d where the ID n
nsferred by the is
hat the processing
We have also sh
with a single st

lel threads make

Algorithms and
ssors. In Advance
, 202, pp. 175-18

e via WWW:
/EA_ht_2008.pd
ject20work%202

read 8thread
Next Th. 1core Err

 but it is still
t threads, the
effect on the

d number of
single stuck-
s).

ns
g a Nvidia’s
in a system

data length is
ion, an extra
ned when an
ets of results
pulation. As
menting the
ult detection
on.

TIME

8-bits

0.53

is performed
number of an
sland for use
g time of the
hown that an
tuck-at fault,
s the system

es in
87, Springer

df#search=’
2008’ (cited

ror

1750

