Fault-tolerance of Distributed Genetic Algorithms
on Many-core Processors

Yuji Sato
Hosei University
3-7-2 Kajino-cho Koganei-shi
Tokyo 184-8584 JAPAN
+81-42-387-4533

yuji@k.hosei.ac.jp

ABSTRACT

This paper reports on fault-tolerant technology for use with high-
speed parallel evolutionary computation on many-core processors. In
particular, for distributed GA models which communicate between
islands, we propose a method where an island's ID number is added
to the header of data transferred by this island for use in fault
detection, and we evaluate this method using Deceptive functions
and Sudoku puzzles. As a result, we show that it is possible to detect
single stuck-at faults with practically negligible overheads in
applications where the time spent performing genetic operations is
large compared with the data transfer speed between islands. We
also show that it is still possible to obtain an optimal solution when a
single stuck-at fault is assumed to have occurred, and that increasing
the number of parallel threads has the effect of making the system
less susceptible to faults and more sustainable.
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D.0 [Computer Applications]: General

General Terms
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1. INTRODUCTION

With the growing popularity of GPU devices and the use of these
devices in fields where high reliability is required, such as scientific
computing and data centers, NVIDIA has developed the Tesla series
of GPUs with ECC memory (error checking and correction memory)
functions.

In this ECC memory, additional information such as a parity code
must be added to each data word. This means that the installed
memory must be allocated for the storage of parity codes. Although
there is no problem allocating the parity codes to part of a high-
capacity memory region such as the global memory (GM), this
approach is unsuitable for the allocation of smaller memory regions
such as registers or shared memory inside a streaming
multiprocessor (SM). Next, the ECC memory can correct single-bit
errors, and can also detect errors of two or more bits but without the
ability to identify the locations of these errors. Therefore, ECC
memory is effective for transient faults, but not always sufficient for
stuck-at faults (Individual signals are assumed to be stuck at Logical
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'1" or '0"). Furthermore, modern supercomputers are often configured
by connecting multiple GPUs in large-scale networks due to the
advantages of such architectures, including their very high
cost/performance ratios and low power consumption. Thus, outside
of the GMs, it is also essential to have some way of detecting faults
in the interconnections between the SMs and GMs, or in the network
between the GPUs.

Against this background, we have already showed that when parallel
evolutionary computation is performed in many-core processors
using a scheme based on independent competition, it seems that
benefits such as higher reliability and lower susceptibility to transient
errors can be achieved [1]. In this paper, we propose an island-model

fault-tolerant  technology that takes communication into
consideration.

2. AN ISLAND-MODEL FAULT-
TOLERANT TECHNIQUE

In a GPU, the transfer of data between SMs is generally specified as
being performed in byte units. On the other hand, the data to be
exchanged does not normally correspond to an exact number of byte
units, so the GPU system pads out the data with random bits to form
a whole number of bytes for transfer between the SMs. Our basic
idea is to perform error detection by making using these left over bits
when data is transferred between SMs.

Figure 1 shows an example of how this idea can be implemented. In
an island model, it is usually determined in advance which island
will transfer data to which island. Here is an example of an
implementation where a single island corresponds to a single SM. In
this example, data is transferred between SMs with an added fault
detection header that uses the bits that are left over when the data is
converted into byte units, and each SM stores a cyclic list showing
the predetermined order in which data is sent to it from the other
SMs. Faults can then be detected by checking whether or not the
header information in the received data matches the information
recorded in the cyclic list. When a fault is detected, the genetic
operations are continued without accepting the received data.

The target of fault detection is assumed to be single stuck-at faults in
the SMs or on the network. When there is a fault in the SM on the
transmitting side, errors occur in the transferred header data so that it
fails to match the information in the cyclic list registered in the
receiving SM. As a result, the fault can be detected and the number
of the SM where this fault occurred can be reported. When there is a
fault in the network, this can be detected when a fault has occurred at
the header insertion location. It is thus possible to detect a single
fault at any location on the network by shifting the header insertion
position each time data is transferred.
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Fig. 1.  Conceptual illustration of the fault-tolerant technique for
island models.

3. EXPERIMENT

3.1 Evaluation using Sudoku puzzles

We investigated the overhead for fault detection using an AMD
Opteron Quad Core 2380 multi-core processor. Experiments were
performed in a system configured with 8 core processors by
connecting two Opteron 2380 processors together. Figures 2 shows
the relationship between the number of generations between data
transfers, the number of generations needed to reach an optimal
solution, and the processing performance per generation for solving
Sudoku puzzles [2]. The bar graph shows the number of generations
until convergence, and the values are shown on the left side. The line
graph shows the processing performance, with the number of
operations per second shown on the right side. This Figure shows the
results obtained with 4 threads. The two bar graphs for each transfer
interval represent ordinary migration from left to right, and migration
where fault detection headers are inserted. Both sets of results were
obtained in experiments with the same initial population. As this
Figure shows, the overheads incurred by implementing the proposed
idea are negligibly small, regardless of the data transfer interval.
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Fig. 2.  Data transfer interval (number of generations) vs. number
of generations needed to reach an optimal solution and processing
performance per generation (number of threads: 4)

Figures 3 shows the relationship between the number of threads and
the number of generations needed to obtain an optimal solution when
assuming a single stuck-at fault. The three bar graphs for each thread
correspond to (from left to right) ordinary migration, migration with
fault detection headers inserted, and migration with fault detection
headers and a single stuck-at fault. Fig. 3 shows the results of a
method where sequential data is transferred to a neighboring thread
("Next" method). In this method, the results obtained with a data
transfer interval of 200 generations are shown. In this Figure, when
there are two threads and we assume a fault in one thread, then the
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number of generations needed for convergence increases but it is still
possible to obtain an optimal solution. With four or eight threads, the
assumption of a fault in one thread has hardly any effect on the
ability to find a solution.
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Fig.3.  Relationship between number of threads and number of
generations needed to find a solution when assuming a single stuck-
at fault ("Next" method, transfer interval: 200 generations).

3.2 Evaluation using Deceptive functions

We investigated the overhead for fault detection using a Nvidia’s
Geforce GTX 680 GPU. Experiments were performed in a system
configured with 8 SMs. In this experiment, the original data length is
64-bits (8-bytes) and there is no space for header insertion, an extra
byte has to be added. Table I shows the overheads obtained when an
extra bits has to be added for header insertion. Whole sets of results
were obtained in experiments with the same initial population. As
this Table shows, the overheads incurred by implementing the
proposed idea are about 13%, for any bit length of fault detection
headers, but it is still possible to obtain an optimal solution.

TABLE L. HEADER LENGTH AND ECESUTION TIME
Header length 0-bits 3-bits 8-bits
Execution time [sec] 0.46 0.52 0.53

4. CONCLUSIONS

In this paper, for an island model where communication is performed
between islands, we proposed a method where the ID number of an
island is added to the header of data transferred by the island for use
in fault detection, and we have shown that the processing time of the
proposed idea is practically negligible. We have also shown that an
optimal solution can be obtained even with a single stuck-at fault,
and that increasing the number of parallel threads makes the system
less susceptible to faults.
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