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ABSTRACT 
This paper proposes a novel crowding method, which is called 
"Crowding with Biased Crossover (CBX)". The Biased crossover 
operator begins with two parents. Then two offspring individuals 
are created, each offspring taking more characteristics from one 
of the two parents. This is an easy method to perform replacement 
between parents and offspring individuals. Experimental results 
showed that CBX is very effective in finding both single global 
solutions and multiple solutions (niching). 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search Heuristic Methods 

General Terms 
Algorithms 

Keywords 
Crowding, Genetic Algorithms (GAs), Niche, Niching 

1. INTRODUCTION 
Crowding methods constitute an important research area in 
genetic and evolutionary computation. There are two main 
objectives of crowding methods: (1) one is to prevent premature 
convergence of a population by preserving the population 
diversity, and obtain one global optimal solution; (2) the other is 
to converge the population to multiple, highly fit, and 
significantly different solutions (niching) [2].  

In this paper, we propose a novel crowding method, which we call 
"Crowding with Biased Crossover (CBX)" and show promising 
results with CBX using several test problems. In the literature of 
crowding methods, the main efforts are focused on how 
replacement is performed between parents individuals and 
offspring individuals using similarity between them as a 
replacement criteria. CBX does not use the similarity as a criteria 
for replacement. Instead, we use a "biased crossover" for 
crossover operators. The biased crossover operator generates 
offspring individuals which are each similar to one of two parent 
individuals. The degree of the similarity between the parents 
individuals and the offspring individuals is controlled by a 
parameter. By choosing the value of the parameter, CBX can 
maintain population diversity to obtain one global optimal 
solution, or converge the population to multiple different 
solutions (niching). 

2. A BRIEF REVIEW OF CROWDING 
METHODS  
Here, we review typical crowding methods. Crowding consists of 
two main phases: pairing and replacement. In the pairing phase, 
offspring individuals are paired with individuals in the current 
population according to a similarity metric. In the replacement 
phase, a decision is made for each pair of individuals as to which 
of them will remain in the population [4]. 

(1) Crowding factor model: The main purpose of the crowding 
factor model by De Jong [1] is to maintain population diversity. 
In the crowding factor model, replacement for each offspring 
produced is considered individually. For each such individual, a 
sample of CF (Crowding Factor) individuals are drawn from the 
population and searched for the most similar individual to the 
offspring in question. The most similar individual from the small 
sample is then directly replaced in the population by the offspring, 
without regard for fitness. 
 (2) Deterministic Crowding (DC): Since offspring are obtained 
by recombination of their parents, parent individuals and 
offspring individuals have a certain degree of similarity. 
Deterministic Crowding (DC) uses this feature as shown in Figure 
1 [3].  

1. Select two parents, p1 and p2, randomly, without replacement
2. Cross them, yielding c1 and c2

3. If |p1, c1| + |p2, c2| ≦ |p1, c2| + |p2, c1|
• If f(c1) > f(p1), replace p1 with c1

• If f(c2) > f(p2), replace p2 with c2

Else
• If f(c2) > f(p1), replace p1 with c2

• If f(c1) > f(p2), replace p2 with c1  
Figure 1. Deterministic crowding methods. 

 (3) Probabilistic Crowding (PC), Boltzmann Crowding (BC): 
Unlike DC, PC uses a non-deterministic rule to establish the 
winner of a competition between parent p and child c. BC is based 
on the well-known Simulated Annealing method, implemented 
with the Boltzmann acceptance rule [2]. 

3. CROWDING WITH BIASED CROSS-
OVER 
As we saw in Section 2, in usual crowding methods, offspring 
individuals are generated using usual crossover operators in the 
pairing phase and then the similarity between parents and 
offspring individuals are measured in the replacement phase. In 
Crowding with Biased Crossover (CBX), CBX does not use the 
similarity measure in the replacement phase. Instead, a "biased 
crossover (BX)" in the pairing phase is used. The BX generates 
two offspring individuals each which is similar to one of the two 
parent individuals.  
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Although BX is not restricted to 2-point crossover, here we 
explain the BX using 2-point crossover for simplicity. Let lc be 
the length between cut-point cut1 and cut2. Since lc distributes in 
[1, n–1] uniformly, the average value of lc, E(lc), is n/2, where n is 
the string length (or problem size). 

In BX, we sample two cut-points so that E(lc) is bigger than n/2. If 
we choose two cut-points so that E(lc) is closer to n, then both 
offspring individuals c1 and c2 are more similar to parents p1 and 
p2, respectively. To control the similarity, BX introduces a 
parameter  (0.5  <1) which controls the similarity by sampling 
lc as E(lc) = n. For probability density function (p.d.f.) of lc, we 
used the following p.d.f. function which was used in our previous 
study on cAS (cunning Ant System, see reference [6] for details). 
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Figure 3 shows the BX and 
Figure 4 shows the CBX 
algorithm. In the BX, if we set 
=0.5, BX is identical to 2-point, 
since p(lc)=1/n and E(lc)=n/2. 
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Figure 3. Biased Crossover (BX).  

1. Set  (e.g. =0.8）
2. Select two parents, p1 and p2, without replacement
3. Sample cut1 randomly in [0,n1]
4. Sample lc according to Eq. (2)
5. Set cut as cut2=(cut1+ lc) Mod n
6. Cross p1 and p2, yielding c1 and c2

 If f(c1)>f(p1), replace p1 with c1

 If f(c2)>f(p2), replace p2 with c2  
Figure 4. Crowding with Biased Crossover (CBX). 

 

4. EXPERIMENTS 
In this section, we perform two types of experiments with CBX; 
(1) To solve the traveling salesman problems (TSPs) to obtain a 
single solution, (2) To solve multimodal problems to obtain 
multiple solutions. 

4.1 Solving TSPs with CBX 
In this experiment, we apply CBX to small size TSP instances 
that are below 100 cities. Here, we use no heuristics. Order 
Crossover (OX) is used for the base of CBX. Population size is 
set to 2n. We run the algorithm until number of evaluations 
reaches 10,000n. 10 runs were performed for each instance. 
Table 1 summarized the results. Here, Error is the average excess 
rate from optimum length over 10 runs. From these results, we 
can see that by choosing a value of  larger than 0.5 (=0.7 or 
0.8), we can obtain good quality solutions.  

 

 

Table 1. Results of CBX on the small TSP instances. 

 =0.5  =0.6  =0.7  =0.8  =0.9
gr48 2.767% 0.951% 0.822% 0.727% 0.182% 6.449%
eil51 4.225% 2.324% 2.394% 1.620% 1.573% 16.033%

berlin52 5.231% 3.467% 2.468% 0.617% 0.000% 12.151%
pr76 12.473% 3.402% 2.118% 1.750% 12.884% 69.458%

kroA100 47.230% 3.605% 2.567% 1.897% 104.584% 144.186%

Instances
Error

Simple GA
CBX

 

4.2 Niching for multimodal problems 
Now we show how CBX converges the population to multiple, 
highly fit, and significantly different solutions (niching). We use 
the following two functions [5]. 
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We encoded x in the range [0, 1] with 30-bit binary string. 
Population size was 100. As shown in Figure 4, CBX found 
multiple solutions with larger value of  than 0.5. 

    

0

0.2

0.4

0.6

0.8

1

1.2

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

x

f x1 0 9( ), . 



0

0.2

0.4

0.6

0.8

1

1.2

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

x

f x1 0 5( ), . 












 

0

0.2

0.4

0.6

0.8

1

1.2

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

x

f x1 0 98( ), . 



0

0.2

0.4

0.6

0.8

1

1.2

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

x

f x2 0 5( ), . 

 


0

0.2

0.4

0.6

0.8

1

1.2

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

x

f x2 0 9( ), . 











0

0.2

0.4

0.6

0.8

1

1.2

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

x

f x2 0 98( ), . 

 
Figure 4. Niching with CBX. 

5. CONCLUSION 
In this paper, we proposed a novel crowding method, Crowding 
with Biased Crossover (CBX). Experimental results showed that 
CBX is very effective in finding both single global solutions and 
multiple solutions (niching). We need to evaluate CBX on various 
problems and this remains for future work. 
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