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ABSTRACT 
This work presents a new multi-objective approach to tool 
sequence optimisation in end milling applications. In this way, the 
process planner is presented with a selection of solutions offering 
a good trade-off between total machining time and total tooling 
costs. The majority of previous research has concentrated either 
on optimising tool selection or machining parameters. In the 
presented approach, each tool in a sequence has its most important 
parameter, cutting speed, simultaneously optimised creating a 
problem with both discrete and continuous properties. The major 
constraint, excess material, is included as an additional objective. 
The problem is solved using NSGA-II with preferential search 
modifications to guide solutions towards the feasible region. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – Heuristic Methods 

Keywords 
EMO; CAM; NSGA-II; R-NSGA-II; Roughing; End milling 

1. INTRODUCTION 
Machining is a subtractive process, involving the removal of 
material from an initial work piece until a desired final geometry 
has been produced. There are three main machining processes: 
drilling, turning and milling [1]. The latter can produce the most 
complex geometrical forms and is the subject of this work. By 
using combinations of tools, machining can be performed more 
efficiently than using a single tool. For example, larger tools can 
be used to remove the bulk of material, while smaller tools can 
follow and cut in places that the larger ones cannot reach. 
Typically, the formation of a tool sequence is performed by a 
process planner by hand, with no guarantees of being optimal. 
Genetic Algorithms and other optimisation methods have been 
successfully applied to this task and a full discussion can be found 
in [1].  
With the exception of [5,7] no work reported in the literature has 
included machining parameters, such as depth of cut, feed and 
cutting speed, in tool sequence optimisation. In [7] tool sequences 
are restricted to two tools and in [5] only single tools are 
considered. This simplifies the complex combinatorial problem 
but at the expense of efficient tool sequences. In this work we 
present the first multiple tool, multi-objective tool sequence 
optimisation approach with the inclusion of the most important 
machining parameter affecting tool wear, cutting speed.  

2. A MULTI-OBJECTIVE APPROACH TO 
TOOL SEQUENCE OPTIMISATION 
Tool sequences, with their related cutting speeds for each 
individual tool, are evaluated using three separate objectives: 

𝑓!() =   𝑡𝑜𝑡𝑎𝑙  𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔  𝑡𝑖𝑚𝑒  
𝑓!() =   𝑡𝑜𝑡𝑎𝑙  𝑡𝑜𝑜𝑙𝑖𝑛𝑔  𝑐𝑜𝑠𝑡𝑠  

𝑓!() =   𝑚𝑎𝑥𝑖𝑚𝑢𝑚  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠  𝑜𝑓  𝑒𝑥𝑐𝑒𝑠𝑠  𝑠𝑡𝑜𝑐𝑘  
A simulation of a tool sequence applied to a specified part 
produces a set of tool paths and a 3D model of the remaining 
material, as described in [1,2]. 𝑓!() is calculated by dividing the 
length of each tool’s path by its linear travel rate.  𝑓!() is 
calculated by using Taylor’s Tool Life Equation to work out how 
much of a tool is consumed during its role in the sequence. This is 
then multiplied by the tool’s cost. 𝑓!() is the maximum distance 
from the desired geometry of any material remaining at the end of 
a sequence and is calculated from the 3D stock model. This is a 
constraint included as an objective and in the experiments below it 
is required to be ≤ 1mm. 

Six multi-objective algorithms are tested using a part and tool 
library described in [2]. The base algorithm is NSGA-II (N) [3]. 
The others are modifications that use preferential strategies to 
guide search towards feasible values of  𝑓!(). These are R-NSGA-
II [4], NSGA-II with weighted objectives (WO), a single and 
multi-objective hybrid Guided Elitism (GE) [2], a novel method 
referred to as Precedential Objective Order Ranking (P) and a 
hybrid between GE and P (H). WO works using a punishment 
factor and multiplies 𝑓!() and 𝑓!() by 𝑓!(). R-NSGA-II uses a 
reference point of [500,500,0.95] corresponding to 
[𝑓!(),𝑓!(),𝑓!()]. GE was introduced by the authors’ previously in 
[2]. 10% of solutions in the child population are automatically 
included in the new population using this function: 

𝑓!"#$%$() = 𝑓!() +   𝑓!() + 𝑓!()  . 10,000  

In P, the user specifies an ordered list, L, of constraints and 
objective preferences. Each entry in the list has a corresponding 
epsilon value, 𝜀. In a binary tournament, two solutions, x and y are 
compared for each entry in the list. Starting with the first entry in 
L, if x has a better value than y, accounting for 𝜀, it wins in the 
tournament. In the opposite situation, y wins the tournament. If 
neither wins, we move on to the next entry in L. If L is exhausted 
without a winner, NSGA-II methods are used. In the experiments, 
L consists of one entry, 𝑓!() and its corresponding 𝜀 is 0.5mm. 

Tool sequences are represented as a list of tuples, with each tuple 
consisting of a pointer to a tool in the tool library and its 
corresponding cutting speed. As there are discrete and continuous 
variables, two different mutation operators are used. Discrete 
mutations modify the tools in the sequence and are described in 
[1]. Continuous mutations are applied to cutting speeds and work 
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by adding a random value drawn from a uniform distribution of 
between ± 3m/min to each value. To reduce computational costs, 
search was allowed to run for 500 simulations (after which the 
discrete operators were disabled) and 10,000 continuous function 
evaluations. The hybrid (H) is formed by running GE for 450 
discrete evaluations and then switching to P for the rest of search. 

3. EXPERIMENTAL EVALUATION 
The algorithms described above were tested over 1,000 trials on a 
cached version of the discrete space. The algorithms were 
assessed using the hypervolume performance indicator, which 
uses a reference point to calculate the hypervolume (HV) covered 
by solutions on the non-dominated front returned by an algorithm 
at the end of an evolutionary run. The point [15000,15000] is used 
as the reference, corresponding to [𝑓!(),𝑓!()]. Only feasible 
solutions with 𝑓!() ≤ 1mm are considered in the HV calculations. 
Results for the algorithms can be seen in Table 1. A Kruskal-
Wallis test indicated there were significant differences and 
pairwise analysis with a Wilcoxan rank sum test found significant 
differences between all algorithms. The Empirical Attainment 
Function (EAF) [6] was used to evaluate the surfaces attained in 
the best, worst and median cases and can be seen in Figure 1.   

Unsurprisingly, N, with its lack of constraint handling techniques, 
is the worst performing algorithm. Its minimum score is very low, 
indicating that it is unable to many feasible solutions. R 
performed slightly worse than the others in terms of HV, and it 
can be seen in Figure 1 that it is biased towards solutions on the 
left side of the Pareto front. This suggests that more reference 
points are needed to cover the whole front. Similarly, GE seems 
particularly good at finding a particular region near the “knee” in 
the center of the front. This could be seen as the most interesting 
point on the front and it reaches this more often on average than 

all the others apart from the hybrid. P and WO score similarly in 
terms of HV, with WO performing slightly better on average. This 
is emulated in the EAF plots, where the median attained surface is 
similar but WO gets slightly closer to the left and right sides of 
the front. The hybrid algorithm performs the best across the board. 
The HV it achieves in its 1st quartile is better than the best scores 
achieved by any of the other algorithms. In the EAF plots it can be 
seen that in the median case it attains a surface very close to the 
Pareto front, and it covers the “knee” region especially well. The 
results show that this approach could be very useful to process 
planners, presenting them with a range of Pareto optimal 
solutions, from which they can make an informed decision. 
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Table 1. Showing the results of the Hypervolume 
Performance Indicator for all of the algorithms taken from 
1,000 runs. All values are displayed in units of 108. 

 N GE R P WO H 

Min 0.397 2.041 1.811 2.024 1.713 2.079 

1st Quartile 1.915 2.094 2.061 2.134 2.147 2.175 

Median 2.014 2.116 2.084 2.152 2.162 2.186 

3rd Quartile 2.085 2.143 2.107 2.158 2.171 2.19 

Max 2.161 2.182 2.163 2.183 2.184 2.194 

 

H: WO: P: 

N: GE: R: 

Figure 1. Empirical Attainment Function plots showing the best (red, dashed), median (green, solid) and worst (blue, dashed) 
surfaces attained by the algorithms. Total machining time (mins) is on the x-axis and total tooling cost (£s) is on the y-axis. 
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