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ABSTRACT
Hundreds of thousands of hours of delay, costing millions of
dollars annually, are reported by US airports. The task of
managing delay may be modeled as a multiagent congestion
problem with agents who collectively impact the system. In
this domain, agents are tightly coupled, and the environ-
ment can quickly change, making it difficult for agents to
assess how they impact the system. We combine the noise
reduction of fitness function shaping, the robustness of coop-
erative coevolutionary algorithms, and agent partitioning to
perform hard constraint optimization on the congestion and
reduce the delay throughout the National Air Space (NAS).
Our results show that an autonomous partitioning of the
agents using system features leads to up to 540x speed over
simple hard constraint enforcement, as well as up to a 21%
improvement in performance over a greedy scheduling solu-
tion corresponding to hundreds of hours of delay saved in a
single day.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems
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1. INTRODUCTION
A primary concern facing the aerospace industry today

is the efficient, safe and reliable management of our ever-
increasing air traffic. In 2011, weather, routing decisions
and airport conditions caused 330,063 delays, accounting for
266,999 hours of delay [2]. Typical methods to alleviate de-
lay involve imposing ground delay on aircraft, changing the
speed of en route aircraft, and changing separation between
aircraft. Because the airspace has many connections from
one airport to another, the congestion and associated delay
can propagate throughout the system. Delays may be im-
posed to better coordinate aircraft and mitigate the prop-
agation of congestion and the associated delay, but which
aircraft should be delayed? The search space in such a prob-
lem is huge, as there are tens of thousands of flights every
day within the United States.
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Our previous approach [1] blended multiagent coordina-
tion, fitness function shaping, automated agent partitioning,
and hard constraint optimization. We extend that approach
to use cooperative coevolutionary algorithms. We succeed
in finding a solution which is robust to changes within the
NAS while decreasing delay incurred by aircraft.

2. RELATED WORK
The air traffic flow management problem (ATFMP) ad-

dresses the congestion in the NAS by controlling ground
delay, en route speed or changing separation between air-
craft. The NAS is divided into many sectors, each with a
restriction on the number of aircraft that may fly through it
at a given time. This number is formulated by the FAA and
is calculated from the number of air traffic controllers in the
sector, the weather, and the geographic location. Addition-
ally, each airport in the NAS has an arrival and departure
capacity that cannot be exceeded. Eliminating congestion
in the system while minimizing delay each aircraft incurs is
the fundamental goal of ATFMP.

The difference evaluation function reduces noise from agents
in the system [3]. This leads to final better policies at an ac-
celerated converge rate. The difference evaluation function
is defined as: Di(z) = G(z) − G(z − zi + c) where z is the
system state, zi is the system state with agent i, and c is a
counterfactual replacing agent i. This counterfactual offsets
the artificial impact of removing an agent from the system.

3. APPROACH TO HARD CONSTRAINT OP-
TIMIZATION

Our approach to traffic flow management involved four
main concepts: formulating a multiagent congestion prob-
lem by defining agents, formulating the appropriate system
fitness function and fitness function shaping, and perform-
ing hard constraint optimization through the use of agent
partitioning.

Agent Definition: Agents were modeled as aircraft with
cooperation enforced by airport terminals. This decentral-
ized solution benefits from many advantages. One of which
is that each aircraft has its own policy, eliminating the need
for a centralized controller. Another is that agents can be
easily partitioned into independent groups, simplifying the
learning problem. Agents have no state, but may select a
certain amount of ground delay from 0 to 10 minutes in the
beginning of every simulation.

Agents evolved their policies using traditional coopera-
tive coevolutionary algorithms (CCEAs). CCEAs are well
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suited for multiagent domains where robustness is a desir-
able quality, and agents need to succeed, or fail, as a team.
The random population member assignment generates a ro-
bust solution which is able to withstand sudden schedule
changes that are frequent in air traffic.

Fitness Evaluation: The system-level evaluation focuses
on the cumulative delay (δ) throughout the system. The
greedy scheduler eliminates congestion by analyzing a planes
flight plan and assigning extra ground delay if it causes con-
gestion. A team of population members take an action, all
actions are then modified using the greedy scheduler, and
then each population member is assigned a fitness based on
the joint actions. The delay is a linear combination of the
amount of ground delay and the amount of scheduler de-
lay an agent incurred: δ(z) =

∑
a∈A δg,a(z) + δs,a(z), where

δg,a(z) is the ground delay the aircraft incurred and δs,a(z)
is the scheduler delay the aircraft incurred.

We wanted to approach this problem with a 28-hour time
frame. This increases the number of agents from thousands
to 35,844. In this complex coordination domain, it is impor-
tant to reduce the noise in the reward signal. A difference
evaluation is easily derived from the system-level evaluation
function: D(z) = (−δ(z)) − (−δ(z − zj + cj))), where δ(z)
is the cumulative delay in the system and δ(z − zj + cj) is
the cumulative delay of with agent j replaced with counter-
factual cj .

Agent Partitioning: Combining the difference evalua-
tion with the greedy scheduler increases computational com-
plexity. The difference evaluation requires the greedy sched-
uler to reschedule all aircraft back into the system, and then
compute the difference in delays. To reduce the computa-
tional overhead we reduced the number of aircraft the greedy
scheduler had to reschedule by partitioning the aircraft into
independent groups. Agents were partitioned together using
hierarchical agglomerative clustering based on the number
of similar sectors they had within their flight plan. This dra-
matically reduces the time complexity and allows the differ-
ence evaluation to be efficiently combined with the greedy
scheduler. This results in a new fitness for each partition i:
Di(z) = (−δi(zi)) − (−δi(zi − zij + cj))) where δi(zi) is the
cumulative delay of partition i and δi(zi − zij + cj) is the
cumulative delay of partition i with agent j replaced with
counterfactual cj .

4. EXPERIMENTAL RESULTS
The experimental results in this paper analyzes the per-

formance of the accumulation of different approaches. Since
this is an extension of previous work, please see Curran et.
al [1] for a more in-depth analysis on performance. In this
paper, we analyze the quality of the partitioning based on
size, time per simulation step and performance.

Speed and performance of partitions were negatively cor-
related. As the number of partitions were reduced, the
greedy scheduler was required to schedule more planes per
difference calculation. This greatly increased the amount of
time per evaluation step. Additionally, with a smaller num-
ber of partitions, planes that slightly affected each other
were partitioned together, leading to higher performance.
This speed and performance correlation also occurs within
the same partition. As the delay decreases, more agents
choose a non-zero delay allowing better scheduling. This
means that the agent no longer equals the counterfactual,

and the difference evaluation calculation cannot be skipped.
Table 1 shows this in more detail.

The agent partitioning allows applications to become very
situation dependent. If results need to be found very quickly,
a larger number of partitions could be used, and this ap-
proach will find a policy still better than using the greedy
scheduler. On the other hand if time spent is not important,
the smaller number of partitions will result in a very good
policy 21% better than the greedy scheduler.

Partitions Time/run (s) Steps Final Delay (min)
First Avg Last

Greedy 5 5 5 * 169,750
1 3hr * * * *
21 116 364 402 2,000 134,050
24 64.8 155 173 2,000 139,630
29 37.1 89.2 100.2 2,000 145,630
38 23.3 46.9 52.38 2,000 154,770
56 16.6 26.6 29.2 2,000 162,710
91 13.5 20.3 22.6 2,000 167,990

Table 1: With the greater number of partitions, the
performance decreases and speed increases.

5. CONCLUSION AND FUTURE WORK
The main contribution of this paper is to present a dis-

tributed adaptive air traffic flow management algorithm with
implementable results. The method introduced is based on
agents cooperating aircraft within the NAS choosing ground
delay with the intent of minimizing delay within the system.
It uses CCEAs in combination with the difference evalua-
tion and hard constraints on congestion. This is typically
an impossible problem, but we introduce agent partitions
to dramatically reduce the time complexity by up to 540x
per evaluation step and a 21% increase in performance over
the greedy solution. The different sized partitions also al-
lowed the implementation to be dynamic to the situation.
If results need to be computed quickly, a large number of
partitions could be used, where a smaller number of parti-
tions could be used if performance was more important than
speed. The ease of adding simple ground delays in combi-
nation with the large increase in performance over currently
used approaches makes this approach easily deployable and
effective.
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