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ABSTRACT
The vehicle routing problem with time windows (VRPTW) has
previously been investigated as a multi-objective problem. In this
paper estimated carbon emissions is added as an objective along-
side the number of vehicles required and distance travelled. We
term this new problem formulation (E)VRPTW. In order to esti-
mate emissions we require detailed information regarding the na-
ture of the route to be taken. As previous benchmark VRPTW
problem instances do not supply such information we generate new
problem instances based upon street network data from Open Street
Map. Results suggest that by adding emissions as the third objec-
tive, in many cases the search may be directed to areas that allow
improvement in the distance and vehicles objectives. As emissions
and distance are inherently related, we do not search for pareto
fronts. Rather we attempt to find solutions that either minimise
distance or minimise vehicles used. Adding the third emissions ob-
jective is shown to enable a multi-objective EA to find improved
solutions in terms of minimal vehicles or minimal distance when
compared to the same multi-objective EA using only two objec-
tives.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search—Heuristic methods, Scheduling

General Terms
Algorithms
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1. INTRODUCTION AND MOTIVATION
The optimisation of problems associated with Vehicle Routing

has a long history both in OR and ECO research. The objective
of this paper is to present a multi-objective formulation of the VRP
problem in which a multi-objective evolutionary algorithm (MOEA)
are used with three objectives measures; vehicles, distance and
CO2 emissions. We investigate the extent to which incorporation
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of the explicit emissions objective influences the solutions found
in terms of the more traditional objectives of number vehicles re-
quired and distance travelled. Previous VRPTW research [4, 5]
found that it was not possible to generate meaningful Pareto fronts.
This is due to the nature of the objectives, the number of vehicles
being determined by the decoding of a grand tour.

Our interest is not in the absolute values of CO2, but in its im-
pact on the other two objectives (distance and vehicles). Within the
EAs investigated, absolute values are not required it is only neces-
sary to be able to rank solutions so that they may be evaluated. In
this work we use the COPERT [1] emissions model to model and
predict vehicle emissions.

2. PROBLEM INSTANCES AND DEFINITION
We define our variant of the VRPTW, as the Emissions Vehicle

Routing Problem with Time Windows (E)VRPTW. The principle
addition to the classical VRPTW definition is the addition of emis-
sions as a third constraint.

The third objective (minimise emissions) may be expressed as:

f3 =

i=V∑
i=1

eVi (1)

where eVi represents the total emissions for each vehicle, calcu-
lated according to the COPERT emissions model.

Problems instances are generated, containing 50, 100, 150 and
200 customer nodes respectively (placed at randomly selected lo-
cations on a map of the city of Edinburgh) and with time win-
dows of length 5,10,30,60,120 and 720 minutes, giving a total of
24 problem instances. Time windows are allocated within a total
time span of 12 hours, the median of each window is selected ran-
domly within 12 hours. Time windows do not start earlier than 30
minutes into the problem time span.

3. THE ALGORITHM
The 24 problem instances were solved using an implementation

of the NSGA-II algorithm[3, 2]. This uses the representation and
operators developed for the VRPTW problem by Ombuki et. al.
[4]. The representation is that of a grand-tour (all customers held
in one permutation). Prior to evaluation, the tour is sub divided
into separate tours for each vehicle. A local-search operator is used
to customers between tours to improve the solution. Each solution
may be evaluated in terms of distance, emissions and no of vehicles
required, the NSGA-II algorithm using all three criterion to rank the
population and calculating crowding distance.
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Ranking D , V
Lowest Vehicles Lowest Distance

50-5 462.32 , 6 434.15 , 8
100-5 736.56 , 11 692.15 , 12
150-5 1168.39 , 17 1032.71 , 19
200-5 1049.05 , 17 1045.76 , 18

50-10 436.49 , 7 411.71 , 8
100-10 702.27 , 9 664.36 , 11
150-10 1018.86 , 15 1003.79 , 16
200-10 1203.21 , 17 1058.07 , 19

50-30 408.85 , 6 391.93 , 7
100-30 620.91 , 8 616.36 , 9
150-30 975.01 , 13 924.73 , 15
200-30 979.55 , 13 887.67 , 14

50-60 345.72 , 5 343.44 , 6
100-60 576.28 , 7 575.87 , 8
150-60 823.95 , 10 789.78 , 14
200-60 855.76 , 11 844.39 , 12

50-120 324.84 , 3 306.23 , 3
100-120 524.3 , 5 490.78 , 6
150-120 711.08 , 8 680.06 , 9
200-120 725.85 , 9 686.95 , 10

50-720 200.16 , 1 200.16 , 1
100-720 308.46 , 1 259.29 , 1
150-720 356.79 , 1 312.22 , 1
200-720 343.57 , 1 332.44 , 1

Ranking D , V , E (Copert)
Lowest Vehicles Lowest Distance

NSGA
50-5 448.54 , 5 , 156.2 395.2 , 7 , 137.8

100-5 668.14 , 11 , 233.2 662.39 , 12 , 231.2
150-5 1134.29 , 17 , 395.5 1067.46 , 18 , 371.6
200-5 1053.76 , 18 , 366.9 1040.67 , 19 , 362.7

50-10 387.75 , 5 , 134.9 372.13 , 6 , 129.4
100-10 652.35 , 11 , 227.7 652.35 , 11 , 227.7
150-10 1040.85 , 16 , 363.6 1005.98 , 17 , 351.9
200-10 1034.02 , 16 , 359.3 1023.46 , 17 , 355.6

50-30 391.68 , 4 , 136.6 377.68 , 5 , 131.8
100-30 599.96 , 8 , 209.5 598 , 9 , 208.8
150-30 955.99 , 14 , 333.1 894.4 , 16 , 311.2
200-30 925.01 , 13 , 322.6 897.52 , 14 , 313.1

50-60 496.73 , 3 , 173.5 340.36 , 5 , 118.5
100-60 629.73 , 8 , 220.3 601.38 , 9 , 209.5
150-60 837.51 , 11 , 292.3 818.15 , 12 , 285.4
200-60 878.6 , 12 , 306.6 858.01 , 12 , 299.3

50-120 270.66 , 3 , 94.9 270.66 , 3 , 94.9
100-120 498.98 , 5 , 174.3 480.43 , 6 , 168.4
150-120 761.76 , 9 , 265.4 720.81 , 11 , 251.2
200-120 719.08 , 9 , 249.7 683.76 , 10 , 237.9

50-720 216.53 , 1 , 75.4 162.27 , 1 , 56.7
100-720 288.83 , 1 , 100.8 267.93 , 1 , 93.8
150-720 323.18 , 1 , 113.3 316.99 , 1 , 110.3
200-720 322.34 , 1 , 112.6 322.34 , 1 , 112.6

Table 1: A summary of results obtained. Problem instances are
named <customers>-<time window>. Solutions are presented
as<distance>, <vehicles>,<emissions>. Items highlighted in
bold represent solutions where the addition of the emissions pa-
rameter has improved one or more of the objectives.

4. RESULTS AND CONCLUSIONS
The 24 problem instances were solved using the algorithm de-

scribed in 3. Each algorithm was run 20 times on each problem
instance. For each problem instance we record the best results ob-
tained for the vehicles and distance objectives. This is the same
methodology used in [5, 4].

The authors set out to examine the effect of adding emissions
as an objective within the VRPTW problem. From table 1 those
solutions highlighted in bold are those where one or both of the
objectives was improved upon when the emissions objective was
added. NSGA-II is able to find 37 improved solutions and the Om-
buki Ranking EA only finds 22. As might be exected the addition
of the third objective is more likely to result in an improvement in
distance rather than vehicles. In attempting to reduce the emissions
objective areas of the search space are being reached that were not
being explored otherwise. If we examine the relationship between
the emissions values and the distance values given in table 1 we find
a Pearson correlation coefficient of 0.99, suggesting a very strong
relation. If we perform the same calculation on emissions and ve-
hicles objectives, we find a coefficient of 0.96 overall. The strong
relationship between emissions and distance will account for low
emissions solutions being likely to also have low distance values.
When the search is expanded to include the emissions objective
there is a likelihood that when solutions which exhibit low emis-
sions are found they will have low distance values. The slightly less
significant relation between emissions and vehicles may account
for the fact that less solutions with fewer vehicles were discovered
when the third parameter was added.
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