
Multi-objective Evolutionary Auto-tuning for Optimising
Algorithm Speed and Cache Memory Usage

Darren M. Chitty
Department of Computer Science

University of Bristol, Merchant Venturers Bldg
Woodland Road, BRISTOL BS8 1UB
darrenchitty@googlemail.com

ABSTRACT
Modern CPUs are complex with hierarchical cache memory
levels, vector instruction sets, instruction level parallelism
and multiple processor cores. Hence, extracting the maxi-
mum performance for a given algorithm is a complex task
and can require the optimisation of a number of parame-
ters. This paper will demonstrate the use of an evolution-
ary approach to tune a matrix multiplication algorithm in
terms of both execution speed and also cache memory usage.
Moreover, it will be shown that these objectives conflict to
some degree. Hence, a multi-objective evolutionary tuning
approach is demonstrated that optimises for both of these
objectives establishing a Pareto front of solutions.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Software—Restructuring,
reverse engineering, and reengineering

General Terms
Algorithms, Experimentation, Performance

Keywords
Multi-objective Genetic Algorithms, auto-tuning

1. INTRODUCTION
This paper will demonstrate the use of an evolutionary

auto-tuning approach to optimise an algorithm in terms of
the separate objectives of execution speed and efficient cache
memory usage. In doing so it will be shown that these two
criteria are mutually exclusive. Thus, multi-objective evolu-
tionary approaches will be investigated to optimise for both
these criteria. To demonstrate multi-objective auto-tuning,
the matrix multiplication algorithm will be used for its com-
putational intensity and transparency to the reader.
Basic matrix multiplication has three nested loops, the

first two loops iterating over each element of the resulting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

matrix with the inner most loop calculating the summation
of the multiplication of each matching element of the respec-
tive row and column of the input matrices. However, this
standard matrix multiplication algorithm does not exploit
modern CPU architectures.

An improved design of a modern multi-core CPU matrix
multiplication algorithm is shown in Algorithm 1. The first
aspect of note is that the second matrix, B, is transposed
to make better use of cache memory. Each time a location
from main memory is requested, a copy is put in the faster
cache memory along with neighbouring values which make
up the cache line. By transposing the second matrix the
access pattern becomes row major better exploiting cache
memory.

Algorithm 1 Parallel Matrix Multiplication Kernel

Require: A, BT , C, m, n, p, mDim, nDim, pDim
1: for i=1 to m, i+=mDim do
2: for j=1 to n, j+=nDim do
3: for k=1 to p, k+=pDim do
4: for i2=i to i+mDim do
5: for j2=j to j+nDim, j2+=2 do
6: float Sum1=0, Sum2=0
7: for k2=k to k+pDim, k2+=2 do
8: Reg=A[i2][k2]
9: Sum1+=Reg*BT [j2][k2]
10: Sum2+=Reg*BT [j2+1][k2]
11: Reg=A[i2][k2+1]
12: Sum1+=Reg*BT [j2][k2+1]
13: Sum2+=Reg*BT [j2+1][k2+1]

14: C[i2][j2]+=Sum1
15: C[i2][j2+1]+=Sum2

A second aspect to note is that there are now an extra
three nested loops such that the matrix multiplication is
now done in blocks [3]. Cache memory has a very limited
size so when placing data into the cache memory, other data
is pushed put. Generally, cache memory operates in a Least
Recently Used (LRU) manner whereby the least recently
used memory locations are pushed out of the cache. Since
data in the input matrices is reused for multiple elements
of the output matrix, by using blocks, this data is retained
in the cache memory thus boosting performance. The three
outermost blocks define the block size and the three inner
most iterate over the elements of the defined block.

Another aspect that exploits the fact that memory access
is much slower than the CPU is Instruction Level Parallelism
(ILP). It can be considered that if an instruction is waiting
for a memory request, another instruction could be executed

201

whilst the data is fetched from the memory. A method that
exploits this is known as loop unrolling [2] which increases
the number of instructions within a loop and reduces the
number of iterations of the loop. Reuse of data in registers
is another aspect that can speed up matrix multiplication as
registers have the fastest access speed. Algorithm 1 demon-
strates this principle with a register used to store an element
of matrix A which is then reused. Finally, the Advanced
Vector Extensions (AVX) instruction set is used which en-
ables a limited level of data parallelism with multiple data
values contained in a 256 bit register and a single opera-
tion performed on the register executes on these multiple
data values simultaneously. The kernel shown in Algorithm
1 can be executed in parallel with separate blocks of the
resulting matrix calculated by differing threads.
Subsequently, there are six parameters which need to be

optimised. The three dimensions of the cache block size, the
number of parallel threads to be used, the degree of loop
unrolling and the amount of register reuse. An additional
two parameters are used to specify the cache block size used
for the matrix transpose. An evolutionary algorithm is used
to tune these parameters to minimise the execution speed
using an Intel i7 processor on multiple matrices. Table 1
shows the speed achieved by the optimised algorithm on
four matrix sizes along with the cache misses.
The experiment is now repeated but instead of minimising

execution speed, the goal is to minimise the cache memory
misses over all three levels of cache memory. These results
are also shown in Table 1. From these results it can be ob-
served that the speed achieved is significantly slower but the
cache misses are also significantly lower. Thus, it can be con-
sidered that the two objectives of minimising cache memory
misses and minimising execution speed are conflicting.

Table 1: The timings and cache misses for matrix
multiplication optimised separately for minimising
speed and cache misses.
Objective Matrix Approx. Cache Misses (millions)

Size GFlops L1 L2 L3
1000 92.815 0.787 0.435 0.180

Optimal 2000 96.066 7.462 3.321 1.455
Speed 3000 96.900 22.661 10.769 4.249

4000 97.508 32.023 25.035 9.612
1000 21.359 0.572 0.263 0.208

Optimal 2000 23.568 3.326 1.534 0.973
Cache 3000 23.546 7.952 4.148 2.527

4000 23.330 27.916 15.592 9.270

2. AN EVOLUTIONARY MULTI-OBJECTIVE
APPROACH TO AUTO-TUNING

With two mutually exclusive objectives, it is not possible
to minimise one objective without increasing the other. A
given solution x can be said to dominate solution y if and
only if fi(x) <= fi(y) for i = 1, ...,K where K is the number
of objectives and also fj(x) < fj(y) for at least one objective
j. A set of non-dominated solutions is known as a Pareto
front. The evolutionary algorithm used to find the Pareto
optimal set of algorithm solutions is the NSGA-II algorithm
[1]. The NSGA-II algorithm is a Pareto ranking technique
and operates by identifying the set of non-dominated fronts
within a population of individuals. A Pareto optimal front
is identified and the solutions removed from the population.
The process repeats until no individuals are left. Solutions

Figure 1: An example Pareto front of evolved matrix
multiplication algorithms

are ranked in terms of which front they belong to. A second
fitness measure is used if two solutions belong to the same
front with the Euclidian distance calculated for each solution
to all the other solutions within the front. The solution with
the highest distance is considered the fitter as this promotes
diversity with solutions on less crowded aspects of the front
being rewarded.

Table 2: The timings and cache misses for both op-
timal objectives from the Pareto front
Objective Matrix Approx. Cache Misses (millions)

Size GFlops L1 L2 L3
1000 89.915 0.579 0.418 0.166

Optimal 2000 94.583 5.359 3.340 1.450
Speed 3000 95.691 16.310 10.946 4.237

4000 97.887 31.935 25.002 9.658
1000 28.115 0.602 0.204 0.148

Optimal 2000 26.285 3.986 1.704 0.979
Cache 3000 26.192 10.463 4.810 2.880

4000 29.475 21.054 10.419 6.375

Using the NSGA-II algorithm, an optimal Pareto front of
solutions is found which is shown in Figure 1. From this it
can observed that the two objectives of minimising execu-
tion time and cache misses are indeed mutually exclusive.
The two solutions from either end of the Pareto front are
tested on the matrix multiplication problems with the re-
sults shown in Table 2. For the solution which had optimal
speed, the GFLOPs are only slightly worse than those for
the optimised single objective of execution speed shown in
Table 1. However, the cache misses are reduced over all
cache levels. In terms of the optimal cache efficient solu-
tion, when comparing with the optimised single objective
of reducing cache misses in Table 1, the cache misses are
broadly similar and in the case of the largest matrix size
better performance is observed. Moreover, the execution
speed is approximately 20% better than when optimising
for cache memory efficiency alone.

3. REFERENCES
[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A

fast and elitist multiobjective genetic algorithm:
NSGA-II. Trans. Evol. Comp, 6(2):182–197, Apr. 2002.

[2] J. Dongarra and A. R. Hinds. Unrolling loops in
FORTRAN. Softw., Pract. Exper., 9(3):219–226, 1979.

[3] G. Golub and C. Loan. Matrix computations. Johns
Hopkins series in the mathematical sciences. Johns
Hopkins University Press, 1989.

202

