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ABSTRACT
Approaches in the area of Search Based Software Engineer-
ing (SBSE) have seen Genetic Programming (GP) algorithms
applied to the optimisation of software. While the poten-
tial of GP for this task has been demonstrated, the com-
plexity of real-world software code bases poses a scalability
problem for its serious application. To address this scalabil-
ity problem, we inspect a form of GP which incorporates a
mechanism to focus operators to relevant locations within a
program code base. When creating offspring individuals, we
introduce operator node selection bias by allocating values
to nodes within an individual. Offspring values are inher-
ited and updated when a difference in behaviour between
offspring and parent is found. We argue that this approach
may scale to find optimal solutions in more complex code
bases under further development.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming;
D.1.2 [Software]: Automatic Programming

Keywords
Search Based Software Engineering; Genetic Programming;
Scalability

1. INTRODUCTION
A general issue with the use of GP is that the size and com-

plexity of individuals has an impact on the effectiveness of a
GP algorithm [3, 2]. This is particularly true when consider-
ing the use of GP to modify software systems. Complexity in
this context can be defined in many ways but generally con-
tains a notion of counting interdependency and interactions
of entities within a program. We seek to address complexity
through the use of rule sets which influence node selection
bias from information which is generated during the GP run.
Our research question follows: Can node selection bias in-
ferred by parent-offspring differences, impact the scalability
of a GP algorithm for source code optimisation? Our exper-
imental results found that the rules outlined here did affect
scalability, albeit negatively.
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2. RELATED WORK
White and Arcuri remark on the problem of scalability

when applying GP to Software Optimisation but designate
it out of scope in their work [8]. Weimer and Forrest address
the scalability problem when applying GP to bug fixing [7]
by biasing node selection before the GP run is started.

Although biasing the selection of nodes before applying
GP has the advantage of adding little overhead during the
GP run, as the GP run progresses and the population evolves
further from the original program, this bias may become less
accurate at recommending relevant locations. If the bias
effect is dampened as the algorithm runs, this may limit the
technique to finding only those solutions that are the result
of a small number of modifications to the code. This may not
be important as Weimer and Forrest’s work [7] along with
Langdon’s [5] show that a large improvement in performance
is possible with few modifications.

Node selection bias can be introduced by attaching val-
ues to program nodes. During the GP run, these values are
updated with random noise when an offspring is created [1].
Values for all nodes in a program form a parameter tree of
values in the same structure as the program. Through re-
peated generations, parameter tree’s emerge which bias the
application of operators to places within the tree which are
generally good. The emergence of useful bias is dependent
on the evolutionary pressure and contains the potential for a
random bias update to be performed which is non-optimal.

3. GP SYSTEM
By taking a more direct approach in modifying node selec-

tion bias we hope to dampen the effects of any sub-optimal
node selection and increase the node selection pressure or
node bias. We therefore look for alternative ways to vary the
parameter tree values other than randomly. By introducing
specific rules for how parameter tree values are changed, we
may be able to optimise node selection and reduce wasted
computational effort. Improving node selection might then
improve the scalability of the algorithm.

Our solution is based on attaching a value to each possi-
ble modification point in a program as described by Angeline
[1]. Each value is used to determine the probability that the
associated node is picked for the application of an opera-
tor. When an offspring individual is generated, the proba-
bility values from its parents are inherited. We inspect two
different rule sets for changing this selection bias when an
offspring program is created.
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According to our first rule set, the values in the offspring
parameter tree will be decreased if the offspring function-
ality score is different to the parents. When the offspring
functionality is unchanged from the parents we increase the
probability of change at the modified nodes.

The second rule set specifies the opposite. If we make a
change in functionality by applying operators at a location
in the program tree, then this location is relevant to the
functionality and so should have a higher chance of being
modified again. This rule set strives to focus the GP algo-
rithm in areas of each individual which have some effect on
the functionality of the individual. By doing this, it is ex-
pected that GP can ignore areas of a program that can be
considered irrelevant bloat or introns from a GP perspective.
By focusing on areas of the code that impact functionality,
it is hoped that less effort is wasted in finding a solution.

We seed the GP algorithm with the program to be op-
timised by converting program source code to an Abstract
Syntax Tree (AST) [6]. The initial population of programs
is generated by repeatedly applying mutation to the orig-
inal program. The fitness function is calculated using the
number of test cases passed and number of instructions per-
formed [4] by each program. To get a normalised measure
of performance, the seed program is evaluated and used as
a baseline. The seed program receives a runtime value of 1
while programs worse than the seed program receive values
higher than 1. Programs which run with less instructions
than the seed program and pass all test cases get a fitness
value below 1.

Primitives for our GP system are gathered from the seed
program which includes operators (infix, postfix), condition-
als, variables, number literals, expressions, updaters and
statements. We manually add the equal to operator (“==”)
and postfix decrement operator (“--”). The following GP
setup is used: Population Size: 250, Generations: 60, Tour-
nament selection: 2, Crossover Rate: 0.9, Mutation Rate:
0.3, Max Program Length: 20 Lines, Max Operator Appli-
cations: 100, Elitism: 5%.

4. EVALUATION
To inspect the scalability of GP on software we use a naive

version of bubble sort as described by White, Arcuri [8] that
requires at minimum 2 changes to find the obvious optimisa-
tion. Our control setup uses traditional random selection of
nodes when applying operators. When rule sets are used to
introduce node selection bias, tournament selection is used
to select nodes.

Our analysis found that both rule sets reduced the algo-
rithms ability to find the optimisation in the program. Stan-
dard GP found the optimisation 13.5% of the time, rule set
one 11% and rule set two 9% of the time. We also anal-
ysed the different distributions of program size and fitness
across the different mechanisms and did not find any vari-
ance in these distributions. Neither of these rule sets affect
the distribution of individual sizes.

The average retry rate has remained the same across all
mechanisms with an average retry of 1.1 for crossover and
max number of retries of 5. The retry average for mutation is
also 1.1 with the max number of retries at 6. This indicates
that the difficulty in performing crossover and mutation is
also not influenced by our approach. We deduce from our
analysis that the rule sets change the behaviour of the GP
algorithm with regard to the structure and the content of

GP individuals only. The structure and content can change
but only limited within the bounds of the distribution of
program size.

5. CONCLUSION
It appears from these results that biasing node selection in

response to changes in functionality is not beneficial to GP
for the example bubble sort case. As our results are prelimi-
nary and negative, we seek to experiment with different bias
allocation rules and extend the range of information that is
gleaned from the generation of a new individual.

Further experimentation, which is currently underway, in-
dicates that updating bias based on performance changes
can benefit the GP algorithm in the desired way. Provided
this development can be validated, we speculate that more
complex rules, possibly including some domain knowledge,
can improve the selection of nodes for the application of op-
erators.

We have answered our research question by demonstrat-
ing how simple rules can be used to apply operators in such
a way as to influence the pace at which GP finds solutions.
Our general research direction is toward developing a form
of “fuzzy” modularisation which exists and operates solely
for the purpose of guiding GP. If Object Oriented Program-
ming provides useful modularisation for human developers,
we are interested in conceptually similar probability based
techniques for GP algorithms.
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