
Search-based Refactoring Detection
Rim Mahouachi, Marouane Kessentini

Computer Science Department
Missouri University of Science and Technology

Rolla, USA
{rimmah, marouanek}@mst.edu

Mel Ó Cinnéide
School of Computer Science and Informatics,

University College Dublin, Ireland
mel.ocinneide@ucd.ie

ABSTRACT
We propose an approach to automate the detection of source code
refactoring using structural information. Our approach takes as
input a list of possible refactorings, a set of structural metrics and
the initial and revised versions of the source code. It generates as
output a sequence of detected changes in terms of refactorings. In
this case, a solution is defined as the sequence of refactoring
operations that minimizes the metrics variation between the
revised version of the software and the version yielded by the
application of the refactoring sequence to the initial version of the
software. We use and adapt global and local heuristic search
algorithms to explore the space of possible solutions.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – abstract data types, polymorphism, control structures.

Keywords
Search-based software engineering, software quality, refactoring,
software metrics, heuristic search.

1. INTRODUCTION
Software systems are frequently refined and restructured for many
reasons such as bug-fixing or source code modification to
accommodate requirement changes. To perform these activities,
one of the most widely used techniques is refactoring which
improves design structure while preserving external behavior
[14]. Many techniques to support refactoring have been proposed
in the literature [14][15]Error! Reference source not found..
The majority of these techniques enable the application of manual
or automated refactoring to fix design problems, e.g., bad smells.

A related but distinct problem arises when a software developer is
faced with a version of an application that has been recently
refactored. They may wish to comprehend what changes have
occurred since the previous version, or the changes may require
that other parts of the software be changed as well [4]. It would be
very useful for them to know what refactorings have been applied
to the previous version of the software to create the current,
revised version. This is the problem we address in this paper, by
using a stochastic search through the space of possible
refactorings, using the metrics profile of the revised software to
guide the search.

A number of existing approaches propose to detect changes
between two (or more) software versions by composing atomic
changes to refactoring operations such as adding and/or deleting
program elements.

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, the Netherlands.
ACM 978-1-4503-1964-5/13/07.

We distinguish between two categories in this existing work: the
first category [5][6][7][8] detects only atomic differences
(elementary refactorings) while the second category [11][12][13]
is able to detect complex differences (composite refactorings).
Our approach can be classified in the second category. In general,
existing approaches propose to detect differences between
software versions using pre- and post-conditions specified for
each refactoring. In this case, the specified conditions are related
to the possible changes that could be detected by comparing the
source and revised code. However, it could be easy to detect
explicit refactoring operations using pre- and post-conditions and
then performing a code matching. However, composite
refactorings that represent a composition of atomic operations are
difficult to detect. In addition, the list of possible changes
combination between models can be very large. Thus, it is a
tedious task to specify conditions for each refactoring and
possible code-change.

To overcome the above-mentioned limitations, we propose to
consider the detection of refactorings between software versions
as an optimization problem using structural metrics. Our approach
takes as input a complete set of refactoring types and a set of
software metrics, and generates as output a list of detected
changes in terms of refactorings. In this case, a solution is defined
as the sequence of refactoring operations that minimizes the
metrics variation between the revised version of the software and
the version yielded by the application of the refactoring sequence
to the initial version of the software. Due to the large number of
possible refactoring combinations, a heuristic method is used
instead of an enumerative one to explore the space of possible
solutions. Thus, we use and adapt a genetic algorithm as a global
heuristic search. Genetic algorithms are a powerful heuristic
search optimization method inspired by the Darwinian theory of
evolution.

2. REFACTORING DETECTION BY
STUDYING METRICS VARIATION
This section shows how the above-mentioned issues can be
addressed and describes the principles that underlie the proposed
method for detecting refactorings from structural information.
Therefore, we first present an overview of the search-based
algorithm employed and subsequently provide the details of the
approach and our adaptation of a genetic algorithm to detect
refactorings.

The general structure of our approach is introduced in Fig. 1. The
approach takes as input the initial and revised source code, a set
quality metrics and a complete set of refactoring types. The
approach generates a set of refactorings that represents the
evolution from the initial source code to the revised one. An
Eclipse plug-in is used to calculate metrics values from the
revised code version and the new version obtained after applying
the proposed solution (refactoring sequence). The process of

205

detecting refactorings can be viewed as the mechanism that finds
the best way to combine refactoring operations of the input set of
refactoring types, in order to minimize the dissimilarity between
the metrics value of the revised code and the code that results
from applying the detected refactorings.

Fig 1. Approach overview

Due to the large number of possible refactoring solutions, we
consider the detection of refactoring between different software
versions as an optimization problem. The algorithm explores a
huge search space. In fact, the search space is determined not only
by the number of possible refactoring combinations, but also by
the order in which they are applied. To explore this huge search
space, we use a global search by the use of a Genetic Algorithm
(GA). This algorithm and its adaptation to the refactoring problem
are described in the next section.

3. CONCLUSION
In this paper we introduce a novel, search-based approach to
software refactoring detection between an initial software version
and a refactored software version. Our approach is based on
representing a proposed solution as a sequence of refactorings,
and evaluating this solution in terms of its metrics profile as
compared with the metrics profile of the refactored software
version. Framing the problem in this manner enables us to use a
Genetic Algorithm to evolve better solutions whose metric
profiles more closely match that of the refactored software
version. Our key hypothesis is that as the metric profiles
converge, so too will the evolved refactoring sequence converge
to the actual refactoring sequence that was originally applied to
generate the refactored version from the initial version.

4. REFERENCES
[1] T. Ekman, U. Asklund, Refactoring-aware Versioning in

Eclipse, Electronic Notes in Theoretical Computer Science
107 (2004) 57-69.

[2] R. Robbes, Mining a Change-Based Software Repository, in:
Proceedings of the Workshop on Mining Software
Repositories (MSR'07), IEEE Computer Society, 2007, pp.
15-23.

[3] M. Koegel, M. Herrmannsdoerfer, Y. Li, J. Helming, D.
Joern, Comparing State- and Operation-based Change
Tracking on Models, in: Proceedings of the IEEE
International EDOC Conference, 2010.

[4] D. Dig, C. Comertoglu, D. Marinov, R. Johnson, Automated
Detection of Refactorings in Evolving Components, in:
ECOOP'06, Vol.4067 of LNCS, Springer, 2006, pp. 404-428.

[5] P. Weissgerber, S. Diehl, Identifying Refactorings from
Source-Code Changes, in: Proceedings of ASE'06, IEEE,
2006, pp. 231-240.

[6] Identifying and Summarizing Systematic Code Changes via
Rule Inference, Miryung Kim, David Notkin, Dan
Grossman, Gary Wilson Jr. TSE: IEEE Transactions on
Software Engineering.

[7] Kyle Prete, Napol Rachatasumrit, Nikita Sudan, Miryung
Kim: Template-based reconstruction of complex
refactorings. ICSM 2010: 1-10

[8] S. Demeyer, S. Ducasse, O. Nierstrasz, Finding Refactorings
via Change Metrics, in: Proceedings of the Conference on
Object-oriented Programming, Systems, Languages, and
Applications (OOPSLA'00), ACM, 2000, pp. 166-177.

[9] Z. Xing, E. Stroulia, Refactoring Detection based on
UMLDiff Change-Facts Queries, in: Proceedings of the 13th
Working Conference on Reverse Engineering (WCRE'06),
IEEE, 2006, pp. 263-274.

[10] S. Vermolen, G. Wachsmuth, E. Visser, Reconstructing
complex metamodel evolution, Tech. Rep. TUD-SERG-
2011-026, Delft University of Technology (2011).

[11] J. M. Küster, C. Gerth, A. Förster, G. Engels, Detecting and
Resolving ProcessModeling Differences in the Absence of a
Change Log, in: Proceedings of the International Conference
on Business Process Management (BPM'08), LNCS,
Springer, 2008, pp. 244-260.

[12] Timo Kehrer, Udo Kelter, Gabriele Taentzer: A rule-based
approach to the semantic lifting of model differences in the
context of model versioning. ASE 2011: 163-172, (2011).

[13] M. Hartung, A. Gross, E. Rahm, Rule-based Generation of
Diff Evolution Mappings between Ontology Versions,
Computing Research Repository 1010.0122, (2010).

[14] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts:
Refactoring – Improving the Design of Existing Code, 1st
ed. Addison-Wesley, June 1999.

[15] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur:
DECOR: A method for the specification and detection of
code and design smells, Transactions on Software
Engineering (TSE), 2009, 16 pages.

206

